FLASH4Rec: A Lightweight and Sparsely Activated Transformer for User-Aware Sequential Recommendation

YaChen Yan, Liubo Li

August 6, 2023

< □ > < 同 >

æ

Introduction

YaChen Yan, Liubo Li

→ < Ξ >

Image: A matrix

æ

- SASRec: The model is trained to predict the next item in the sequence, and during inference, it can recommend a list of items that the user is likely to interact with next.
- BERT4Rec: BERT4Rec applies the masked language modeling technique from BERT to recommendation systems.

etc.

Transformer Architecture for Recommendation Cont.

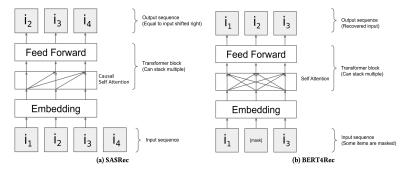


Figure: SASRec vs. BERT4Rec¹

¹ Petrov	et	al.	
---------------------	----	-----	--

< □ > < 同 > < 回 > < 回 > < 回 >

- User-Aware Recommendation
 - Leveraging user demographics and profiles to generate dynamic item sequence representation.
- Lightweight but still performant Transformer Layer
 - A more efficient alternative to multi-head self-attention.
 - Linear Attention: $O(N^2) \rightarrow O(N)$.
 - An alternative to FFN having higher modeling capacity

Proposed Methods

æ

< □ > < □ > < □ > < □ > < □ >

The Architecture of FLASH4Rec

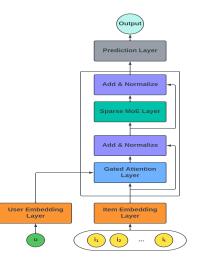


Figure: The Architecture of FLASH4Rec

en Yan	

3

8/24

(日)

We introduce a new architecture called FLASH4Rec, which efficiently models item dependencies in users' historical behavior sequences.

- The architecture consists of a Gated Attention Layer and a Sparsely-Gated Mixture-of-Experts Layer.
- The Gated Attention Layer computes user-aware item sequence representations, while the SparseMoE Layer increases the model's capacity without increasing computational costs.
- To prevent overfitting, we include a Top-K Dropout mechanism that encourages the model to learn from long-tail attention positions.

Gated Attention Layer Cont.

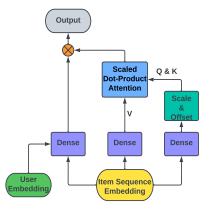


Figure: The Architecture of Gated Attention Layer

YaChen Yan, Liubo Li

FLASH4Rec

ヨト イヨト August 6, 2023

Image: A matrix and a matrix

Gated Attention Layer Cont.

QKV:

$$Z = \sigma(X_I W_z) \qquad \in \mathbb{R}^{T \times k} \qquad (1)$$
$$V = \sigma(X_I W_v) \qquad \in \mathbb{R}^{T \times k} \qquad (2)$$

Gating:

$$U = \sigma(\operatorname{Concat}(X_I, X_U) W_u) \qquad \in \mathbb{R}^{T \times k}$$
(3)

Attention:

$$A = \operatorname{softmax}\left(\frac{\mathcal{Q}(Z)\mathcal{K}(Z)^{\top}}{\sqrt{d_k}}\right) \qquad \in \mathbb{R}^{T \times T} \qquad (4)$$
$$A = 1 + \left(\frac{\mathcal{Q}(Z)}{\|\mathcal{Q}(Z)\|}\right)^{\top} \left(\frac{\mathcal{K}(Z)}{\|\mathcal{K}(Z)\|}\right) \qquad \in \mathbb{R}^{T \times T} \qquad (5)$$

Output:

$$O = U \otimes AV \tag{6}$$

- (日)

æ

Sparse Mixture-of-Experts Layer

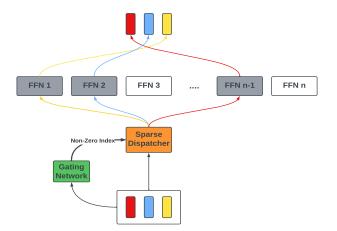


Figure: The Architecture of Sparse Mixture-of-Experts Layer Layer

YaChen Yan, Liubo Li

August 6, 2023

- (日)

∃ →

Noisy Gating Network

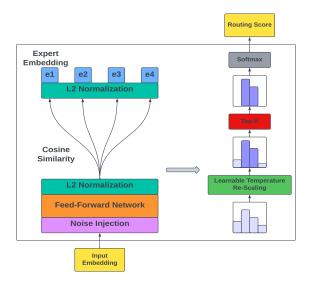


Figure: The Noisy Gating Network within Sparse Mixture=of-Experts Layer

YaChen	Yan,	Liubo	L
--------	------	-------	---

FLASH4Rec

August 6, 2023

- Experts: Feed-Forward Network (FNN)
- Noisy Gating Network:
 - A neural network selecting the Top-1 experts per item embedding.
 - Load Balance Regularization.
- Sparse Dispatcher
 - Dispatch input and sparsely activate corresponding experts.
 - Combine each expert's output.

- Item Popularity: Power-Law Distribution
- Bias the model to overly rely on on popular item's embedding
- Balance: short-tail item embeddings vs. long-tail item embeddings

Formally given a self-attention weight matrix $A \in \mathbb{R}^{T \times T}$, we firstly compute its Top-K position indicator S_A , in which each element $S_{i,j}$ is defined as:

$$S_{i,j} = \begin{cases} 1 & \text{if } A_{i,j} \text{ is in the top } k \text{ elements of } A_{i,\cdot} \\ 0 & \text{otherwise.} \end{cases}$$
(7)

Next, we want to randomly dropout self-attention weights within the Top-K positions to produce the Top-K mask matrix M_A with dropout rate p:

$$M_{i,j} = \begin{cases} 0 & \text{if } s_{i,j} * Bernoulli(p) = 1 \\ 1 & \text{otherwise,} \end{cases}$$
(8)

After the dropout is applied, we re-scale the self-attention weights by scaling factor f:

$$f = \frac{1}{1.0 - \left(\sum_{i=1}^{T} \sum_{j=1}^{T} A_{i,j} * M_{i,j} / \sum_{i=1}^{T} \sum_{j=1}^{T} A_{i,j}\right)}$$
(9)

YaChen Yan, Liubo Li

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Table: Performance Comparison of Different Algorithms on ML-1M, ML-20M and Yelp Dataset.

	ML	-1M	ML-	20M	Y	elp
Model	Recall@10	NDCG@10	Recall@10	NDCG@10	Recall@10	NDCG@10
MF-BPR	0.0740	0.0377	0.0807	0.0407	0.0191	0.0092
GRU4Rec	0.2132	0.1093	0.1544	0.0839	0.0113	0.0048
SASRec	0.1993	0.1078	0.1439	0.0724	0.0146	0.0076
BERT4Rec	0.2584	0.1392	0.2393	0.1310	0.0149	0.0079
FLASH4Rec	0.2841	0.1568	0.2554	0.1487	0.0151	0.0081

Table: Efficiency Comparison of BERT4Rec and FLASH4Rec on ML-1M Dataset.

	Params	FLOPs
BERT4Rec	3.08M	74.12M
FLASH4Rec	3.16M	63.10M

Table: Abalation Study about key componenets of FLASH4Rec on ML-1M Dataset.

	Recall@10	NDCG@10
FLASH4Rec	0.2841	0.1568
w/o Gated Attention	0.2690	0.1488
w/o SparseMoE Layer	0.2787	0.1535
w/o Top-K Dropout	0.2765	0.1512

YaChen Yar	i, Liubo Li
------------	-------------

E ► < E ►

Image: A image: A

3

- We introduce FLASH4Rec, a Transformer variant for sequential recommendation, employing a Gated Attention Layer and Sparsely-Gated Mixture-of-Experts Layer for efficient and effective user-aware item sequence representation.
- The Top-K Dropout technique is designed to facilitate model learning from low-attention positions, thereby reducing over-fitting.

Thank You!

YaChen Yan, Liubo Li

FLASH4Rec

→ < ∃ →</p> August 6, 2023

Image: A image: A

3