
1

The Symbiosis of LLMs and RecSys: from
LLM for RecSys to RecSys for LLM

Yanjie Fu

Yanjie.fu@asu.edu

School of Computing and AI

Arizona State University

2

About Me

• Associate Professor, School of Computing and AI, Fulton Schools of Engineering, Arizona State
University

• Ph.D. from Rutgers University, NJ, USA
• B.E. from University of Science and Technology of China (USTC), Hefei, China
• Research and Teaching

• Selected awards: 2023 US NAE FOE Early Career Engineer, 2021 US NSF CAREER, 2018 NSF CISE CRII
• 5 Best Paper (Runner-up, Finalist) Awards: KAIS Best of IEEE ICDM 2022, KAIS Best of IEEE ICDM 2021, ACM

TSAS Best of SIGSpatial2020, ACM TKDD Best of SIGKDD2018, KAIS Best of IEEE ICDM2014

• Dissertation Ph.D. Students
• Pengyang Wang (Tenure-track Assistant Professor at Univ of

Macau, graduated in 2021)
• Kunpeng Liu (Tenure-track Assistant Professor at Portland

State University, graduated in 2022)
• Wei Fan (Postdoc at University of Oxford UK, graduated in

2023)
• Dongjie Wang (Tenure-track Assistant Professor at Univ of

Kansas, graduated in 2024)

• Joint Exchange Program Ph.D. Students
• Meng Xiao, an assistant professor at Chinese Academy of

Sciences
• Ziyue Qiao, an assistant professor at the Great Bay

University
• Lu Jiang, an assistant professor at Dalian Maritime

University
• Pengfei Wang, an associate professor at Chinese Academy

of Sciences
• Peijie Sun, an associate professor at Nanjing University of

Posts and Telecommunications

3

Recommender Systems (RecSys)

• Recommender systems: addressing information overload
• Learning to recommend interesting items to users

• Formulations of RecSys
• RecSys as rating prediction: predict the ratings of users for items
• RecSys as matrix completion: complete missing entries of a user-item rating matrix
• RecSys as link prediction: infer the link between a user and an item
• RecSys as ranking inference: rank items for users
• RecSys as similarity computing: compute the similarities between users and items to

recommend based on similarities
• RecSys as matching/pairing problems: match users with items
• RecSys as allocation problems: allocate/assign items to users
• RecSys as optimization problems: minimize/maximize the loss/likelihood between

ground-truth ratings and predicted ratings

4

Sample RecSys

5

Large Language Models (LLM)

• LLM are advanced AI designed to understand, generate, and interact
with human languages

• The interpretation of “LARGE”

• Large training data, large parameter sizes, large computing power, large
downstream tasks (e.g., text understanding, generation, summarization,
translation, sentiment, classification, entity recognition, text-to-X/X-to-text
generation, ChatBots, QA)

• X as LLM
• The generation capability of LLM allows us to reformulate any AI task as LLM,

including RecSys as LLM

6

Basic Language Models

Auto-Encoding Language Models

• Predict masked tokens using
context information.

𝑝 𝑥 =෍

𝑡=1

𝑁

𝑚𝑎𝑠𝑘𝑡log 𝑝 𝑡𝑘ȁ𝑪𝒐𝒏𝒕𝒆𝒏𝒕

Auto-Regressive Language Models

• Predict the current token based on the
tokens that appear before (or after) it.

𝑝 𝑥 = ෍

𝑘=1

𝑁

log 𝑝 𝑡𝑘ห𝑡1, … , 𝑡𝑘−1

7

Sample LLMs

• Technical Path
• Transformer
• BERT (encoder only)
• GPT (decoder only)
• BART (encoder-decoder)
• Domain-specific LLM
• Multi-modal LLM

• Selected LLM Tools
• Llama: open source, tunable (https://www.llama.com/)

• ChatGPT/o1: strong power, costly (https://openai.com/)

• Claude: good at coding and reasoning (https://www.anthropic.com/claude)

https://www.llama.com/
https://openai.com/
https://www.anthropic.com/claude

8

LLM’s One-Sided Contributions to RecSys

• LLM for RecSys
• Reformulating RecSys tasks into LLM token generation (direct item

recommendation, rating prediction, sequential recommendation, explainable
recommendation)

• Generalize pre-training and fine-tuning to fine-tune RecSys on specific
recommendation datasets/tasks

• Leverage LLM’s comprehension ability to profile user, item, and contexts

• Leverage LLM’s interaction ability to provide continuous refinement with user
feedback

• Leverage LLM’s textual generation to provide explainable recommendation

• LLM as few-shot or zero-shot recommenders

9

Reciprocal Benefits Between LLM and RecSys

• RecSys for LLM
• User modeling: can inspire us to develop personalized LLM

• Decision and choice modeling: can inspire us to recommend the most
appropriate LLM to a query

10

LLM for RecSys: Graph Knowledge Structured LLM as
RecSys

11

A Graph-based View of RecSys

• See user-item interactions or user-item rating matrix as graphs

• Leverage graph structure and topology to enhance RecSys

12

A LLM-based View of RecSys

• Recommending an item as generating a
special token

• LLMs can equip RecSys with the ability to
connect contextual language cues

• A customer searches “summer clothing"

• Classic recsys: receive broad
suggestions based on past purchases
or generic category trends

• LLM recsys: analyze not just
“summer clothing”, but also analyze
search queries, product descriptions,
and user reviews, to suggest items
with specific attributes like
"lightweight," "breathable," or "eco-
friendly."

13

Our AI Task: Integrating the Graph and LLM
Views for Enhancing RecSys

14

Overview of Proposed Solution

15

Step 1: Graph Connectivity Guided Attentive
LLM Backbone Model
• Reformulate RecSys into a probabilistic generative problem in response to

prompts

• GPT2 as LLM base model
• The Transformer architecture
• Pre-train on vast text datasets to predict subsequent words
• The attention mechanism: determine how much attention to pay to each word when

generating the next word in the sequence

• Integrating two types of graph connectivity into attention

• The direct connection: 1/0 binary connection indicator between nodes
• The indirect connection: a normalized shortest path score between nodes computed

based on the entire graph

16

Step 2: Pretraining The Backbone Model
• A: Data collection

• user descriptions
• item descriptions
• user reviews for items
• historical events that users interact

(e.g., rate or purchase) with items

• B: Constructing training data with
contextual and relational cues

• C: Optimization Objective
• Given the training data, GPT2 is to

predict the next token in the textual
sequence

• The objective is to maximize the
token generation likelihood of the
training data.

17

Step 3: Using Personalized Predictive Prompts
for Fine-tuning
• A: Personalized Predictive Prompts

• B: Optimization Objective: minimizing the rating prediction loss
between gold rating and estimated rating

18

Experimental Data

19

Baseline Methods

20

Comparison Results of Rating Prediction

21

RecSys for LLM: Dynamic Query-LLM Routing as Adaptive
Choice Modeling in RecSys

22

Motivation

We aim to balance performance, cost, and latency to achieve the trade-off.

Cost LatencyResponse Quality

We want to select the model which
can answer the query correctly

At the set level, the comparable response
quality with lower cost is possible

We don't want the query to
queue for a long time

23

The AI Task

• The LLM routing task aims to identify the most suitable model for
each query in the query stream to
• maximize response quality

• minimize cost and latency

24

Challenges

• A dynamic query stream
• Trade-offs among quality, cost, and latency
• Navigating a varying (e.g., new LLM addition or old LLM removal) set

of LLM candidates over time
• Enabling continual learning in even after deployment

25

Why Existing Literature Isn’t Sufficient

• Non-predictive (Cascading): try small LM first, then decide to switch
to LLM or not
• each query is answered by more than one LM (higher cost, higher

delay)
• the decision maker is another LM, requiring extra time and

computing resources
• when multiple LLMs are involved, it is hard to sequence them

(from small to large)

• Predictive

26

Why Existing Literature Isn’t Sufficient

• Predictive: predict the features and characteristics of the query

• classifier: no strong connection between the query and the final
label (new LLM -> new label)

• response quality predictor: no cost consideration
• set-level optimization: some queries may be ignored (users may be

disappointed)
• common embedding vector for different candidate LMs
• no time (system information) limitation consideration

27

The Unique Perspective

• Dynamic routing system:
• Queries arrive sequentially → query level operation

• Predictive pipeline:
• No LLM inference is needed when routing

• Informative embeddings:
• Use query tags to enhance the encoder

• Trade-off:
• Budget: adjust the weight between cost and performance
• Delay: employ latency penalty when choosing the final LLM

28

Overview of the Proposed Solution

29

Step 1: Tag-Enhanced Query Embedding (1)
• Why using tags as representation of queries? The semantics of query

tags closely connect to LLM response quality.

Each color representing a cluster of queries GPT-4 has a higher frequency of errors (marked as
orange) in the legal (marked as red) and math (marked
as purple) domains

30

Tag-Enhanced Embedding

• BERT-based encoder for sentence embedding

• Employ the InsTag [1] to generate fine-grained tags, then cluster them

• Train encoder based on cluster labels

[1] Lu, Keming, et al. "# instag: Instruction tagging for analyzing supervised fine-tuning of large language models." The Twelfth International Conference on Learning Representations . 2023.

31

Estimating the Accuracy, Latency, Costs of a
LLM-Query Pair
• For each LLM, we learn a regression model to predict the response

quality of the LLM on a query:

• Predict response length for estimating total cost:

32

Meta Decision Maker

• Select the most suitable according to the score = trade-offs the
predicted quality and cost + potential prediction uncertainty - waiting
time

• Balancing of response quality and cost

• Uncertainty is employed to correct errors in predicting

• Time penalty prevents the excessive waiting time

33

Continual Learning (1): Offline Training

• Offline Training:
• Before the deployment

• Full feedback from all candidate LLMs (arms)

• Predictors are updated:

34

Continual Learning (2): Online Training

• Online Training:
• Post-deployment

• Partial feedback only from the selected and highly-scored LLMs over
iterations

• Refined Feedback: the same as offline training

• Binary Feedback:

35

Results: Performance

• Our method
outperforms baselines
and maintains
performance when
latency is high.

• Under time constraints,
performance may
decline even with a
high budget, as some
queries might be
ignored due to high
latency

36

Results: Performance

• MixLLM performs
well even without
the time penalty.

37

Results: Continuous training

• In real-world applications, collecting full feedback is difficult and
expensive,

• But the responses to queries can serve as partial feedback. And the
amount of data during inference will far exceed that during training.

• Continuous training offers improved performance.

38

Results: Adaptability

• With the introduction
of the powerful Llama
3.1 models, MixLLM
achieves 98.55% of
GPT-4's response
quality while reducing
the cost to just 18.36%.

• MixLLM is highly
efficient, as the
parameters in the
original arms remain
unchanged.

39

Conclusion Remark

40

Q & A
Yanjie Fu

Yanjie.fu@asu.edu

School of Computing and AI

Arizona State University

41

Thank You for Listening
Yanjie Fu

Yanjie.fu@asu.edu

School of Computing and AI

Arizona State University

	Slide 1: The Symbiosis of LLMs and RecSys: from LLM for RecSys to RecSys for LLM
	Slide 2: About Me
	Slide 3: Recommender Systems (RecSys)
	Slide 4: Sample RecSys
	Slide 5: Large Language Models (LLM)
	Slide 6: Basic Language Models
	Slide 7: Sample LLMs
	Slide 8: LLM’s One-Sided Contributions to RecSys
	Slide 9: Reciprocal Benefits Between LLM and RecSys
	Slide 10
	Slide 11: A Graph-based View of RecSys
	Slide 12: A LLM-based View of RecSys
	Slide 13: Our AI Task: Integrating the Graph and LLM Views for Enhancing RecSys
	Slide 14: Overview of Proposed Solution
	Slide 15: Step 1: Graph Connectivity Guided Attentive LLM Backbone Model
	Slide 16: Step 2: Pretraining The Backbone Model
	Slide 17: Step 3: Using Personalized Predictive Prompts for Fine-tuning
	Slide 18: Experimental Data
	Slide 19: Baseline Methods
	Slide 20: Comparison Results of Rating Prediction
	Slide 21
	Slide 22: Motivation
	Slide 23: The AI Task
	Slide 24: Challenges
	Slide 25: Why Existing Literature Isn’t Sufficient
	Slide 26: Why Existing Literature Isn’t Sufficient
	Slide 27: The Unique Perspective
	Slide 28: Overview of the Proposed Solution
	Slide 29: Step 1: Tag-Enhanced Query Embedding (1)
	Slide 30: Tag-Enhanced Embedding
	Slide 31: Estimating the Accuracy, Latency, Costs of a LLM-Query Pair
	Slide 32: Meta Decision Maker
	Slide 33: Continual Learning (1): Offline Training
	Slide 34: Continual Learning (2): Online Training
	Slide 35: Results: Performance
	Slide 36: Results: Performance
	Slide 37: Results: Continuous training
	Slide 38: Results: Adaptability
	Slide 39: Conclusion Remark
	Slide 40: Q & A
	Slide 41: Thank You for Listening

