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Recommender Systems (RecSys)

• Recommender systems: addressing information overload
• Learning to recommend interesting items to users

• Formulations of RecSys
• RecSys as rating prediction: predict the ratings of users for items
• RecSys as matrix completion: complete missing entries of a user-item rating matrix
• RecSys as link prediction: infer the link between a user and an item
• RecSys as ranking inference: rank items for users 
• RecSys as similarity computing: compute the similarities between users and items to 

recommend based on similarities 
• RecSys as matching/pairing problems: match users with items
• RecSys as allocation problems: allocate/assign items to users
• RecSys as optimization problems: minimize/maximize the loss/likelihood between 

ground-truth ratings and predicted ratings
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Sample RecSys
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Large Language Models (LLM)

• LLM are advanced AI designed to understand, generate, and interact 
with human languages

• The interpretation of “LARGE”

• Large training data, large parameter sizes, large computing power, large 
downstream tasks (e.g., text understanding, generation, summarization, 
translation, sentiment, classification, entity recognition, text-to-X/X-to-text 
generation, ChatBots, QA) 

• X as LLM
• The generation capability of LLM allows us to reformulate any AI task as LLM, 

including RecSys as LLM



6

Basic Language Models

Auto-Encoding Language Models

• Predict masked tokens using 
context information.

𝑝 𝑥 =෍

𝑡=1

𝑁
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Auto-Regressive Language Models

• Predict the current token based on the 
tokens that appear before (or after) it.
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Sample LLMs

• Technical Path
• Transformer
• BERT (encoder only)
• GPT (decoder only)
• BART (encoder-decoder)
• Domain-specific LLM
• Multi-modal LLM

• Selected LLM Tools
• Llama: open source, tunable (https://www.llama.com/)

• ChatGPT/o1: strong power, costly (https://openai.com/)

• Claude: good at coding and reasoning (https://www.anthropic.com/claude)

https://www.llama.com/
https://openai.com/
https://www.anthropic.com/claude
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LLM’s One-Sided Contributions to RecSys

• LLM for RecSys
• Reformulating RecSys tasks into LLM token generation (direct item 

recommendation, rating prediction, sequential recommendation, explainable 
recommendation)

• Generalize pre-training and fine-tuning to fine-tune RecSys on specific 
recommendation datasets/tasks

• Leverage LLM’s comprehension ability to profile user, item, and contexts

• Leverage LLM’s interaction ability to provide continuous refinement with user 
feedback 

• Leverage LLM’s textual generation to provide explainable recommendation

• LLM as few-shot or zero-shot recommenders
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Reciprocal Benefits Between LLM and RecSys

• RecSys for LLM
• User modeling: can inspire us to develop personalized LLM

• Decision and choice modeling: can inspire us to recommend the most 
appropriate LLM to a query
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LLM for RecSys: Graph Knowledge Structured LLM as 
RecSys
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A Graph-based View of RecSys

• See user-item interactions or user-item rating matrix as graphs 

• Leverage graph structure and topology to enhance RecSys
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A LLM-based View of RecSys

• Recommending an item as generating a 
special token

• LLMs can equip RecSys with the ability to 
connect contextual language cues 

• A customer searches “summer clothing" 

• Classic recsys: receive broad 
suggestions based on past purchases 
or generic category trends

• LLM recsys: analyze not just 
“summer clothing”, but also analyze 
search queries, product descriptions, 
and user reviews, to suggest items 
with specific attributes like 
"lightweight," "breathable," or "eco-
friendly." 
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Our AI Task: Integrating the Graph and LLM 
Views for Enhancing RecSys
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Overview of Proposed Solution
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Step 1:  Graph Connectivity Guided Attentive
LLM Backbone Model
• Reformulate RecSys into a probabilistic generative problem in response to 

prompts

• GPT2 as LLM base model
• The Transformer architecture
• Pre-train on vast text datasets to predict subsequent words
• The attention mechanism: determine how much attention to pay to each word when 

generating the next word in the sequence

• Integrating two types of graph connectivity into attention

• The direct connection: 1/0 binary connection indicator between nodes
• The indirect connection: a normalized shortest path score between nodes computed 

based on the entire graph



16

Step 2: Pretraining The Backbone Model 
• A: Data collection

• user descriptions
• item descriptions
• user reviews for items
• historical events that users interact 

(e.g., rate or purchase) with items

• B: Constructing training data with 
contextual and relational cues

• C: Optimization Objective
• Given the training data, GPT2 is to 

predict the next token in the textual 
sequence

• The objective is to maximize the 
token generation likelihood of the 
training data. 
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Step 3: Using Personalized Predictive Prompts 
for Fine-tuning
• A: Personalized Predictive Prompts

• B: Optimization Objective: minimizing the rating prediction loss 
between gold rating and estimated rating 
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Experimental Data
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Baseline Methods
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Comparison Results of Rating Prediction



21

RecSys for LLM: Dynamic Query-LLM Routing as Adaptive 
Choice Modeling in RecSys
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Motivation

We aim to balance performance, cost, and latency to achieve the trade-off.

Cost LatencyResponse Quality

We want to select the model which
can answer the query correctly

At the set level, the comparable response 
quality with lower cost is possible

We don't want the query to 
queue for a long time
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The AI Task

• The LLM routing task aims to identify the most suitable model for 
each query in the query stream to 
• maximize response quality

• minimize cost and latency
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Challenges 

• A dynamic query stream
• Trade-offs among quality, cost, and latency
• Navigating a varying (e.g., new LLM addition or old LLM removal) set 

of LLM candidates over time
• Enabling continual learning in even after deployment
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Why Existing Literature Isn’t Sufficient

• Non-predictive (Cascading): try small LM first, then decide to switch 
to LLM or not
• each query is answered by more than one LM (higher cost, higher 

delay)
• the decision maker is another LM, requiring extra time and 

computing resources
• when multiple LLMs are involved, it is hard to sequence them

(from small to large)

• Predictive 
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Why Existing Literature Isn’t Sufficient

• Predictive: predict the features and characteristics of the query

• classifier: no strong connection between the query and the final 
label (new LLM -> new label)

• response quality predictor: no cost consideration
• set-level optimization: some queries may be ignored (users may be

disappointed)
• common embedding vector for different candidate LMs
• no time (system information) limitation consideration
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The Unique Perspective

• Dynamic routing system:
• Queries arrive sequentially → query level operation

• Predictive pipeline:
• No LLM inference is needed when routing

• Informative embeddings:
• Use query tags to enhance the encoder

• Trade-off:
• Budget: adjust the weight between cost and performance
• Delay: employ latency penalty when choosing the final LLM
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Overview of the Proposed Solution
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Step 1: Tag-Enhanced Query Embedding (1)
• Why using tags as representation of queries? The semantics of query 

tags closely connect to LLM response quality.

Each color representing a cluster of queries GPT-4 has a higher frequency of errors (marked as 
orange) in the legal (marked as red) and math (marked 
as purple) domains
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Tag-Enhanced Embedding

• BERT-based encoder for sentence embedding

• Employ the InsTag [1] to generate fine-grained tags, then cluster them

• Train encoder based on cluster labels 

[1] Lu, Keming, et al. "# instag: Instruction tagging for analyzing supervised fine-tuning of large language models." The Twelfth International Conference on Learning Representations . 2023.
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Estimating the Accuracy, Latency, Costs of a 
LLM-Query Pair 
• For each LLM, we learn a regression model to predict the response 

quality of the LLM on a query:

• Predict response length for estimating total cost:
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Meta Decision Maker

• Select the most suitable according to the score = trade-offs the 
predicted quality and cost + potential prediction uncertainty -  waiting 
time

• Balancing of response quality and cost

• Uncertainty is employed to correct errors in predicting

• Time penalty prevents the excessive waiting time
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Continual Learning (1): Offline Training

• Offline Training: 
• Before the deployment

• Full feedback from all candidate LLMs (arms)

• Predictors are updated:
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Continual Learning (2): Online Training

• Online Training: 
• Post-deployment

• Partial feedback only from the selected and highly-scored LLMs over 
iterations 

• Refined Feedback: the same as offline training

• Binary Feedback:
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Results: Performance

• Our method
outperforms baselines
and maintains
performance when
latency is high.

• Under time constraints, 
performance may 
decline even with a 
high budget, as some 
queries might be 
ignored due to high 
latency
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Results: Performance

• MixLLM performs 
well even without 
the time penalty.
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Results: Continuous training

• In real-world applications, collecting full feedback is difficult and 
expensive, 

• But the responses to queries can serve as partial feedback. And the 
amount of data during inference will far exceed that during training. 

• Continuous training offers improved performance.
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Results: Adaptability

• With the introduction 
of the powerful Llama 
3.1 models, MixLLM 
achieves 98.55% of 
GPT-4's response 
quality while reducing 
the cost to just 18.36%.

• MixLLM is highly 
efficient, as the 
parameters in the 
original arms remain 
unchanged.



39

Conclusion Remark
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