# The Symbiosis of LLMs and RecSys: from LLM for RecSys to RecSys for LLM

Yanjie Fu

Yanjie.fu@asu.edu School of Computing and AI Arizona State University



#### About Me

- Associate Professor, School of Computing and AI, Fulton Schools of Engineering, Arizona State University
- Ph.D. from Rutgers University, NJ, USA
- B.E. from University of Science and Technology of China (USTC), Hefei, China
- Research and Teaching
  - Selected awards: 2023 US NAE FOE Early Career Engineer, 2021 US NSF CAREER, 2018 NSF CISE CRII
  - 5 Best Paper (Runner-up, Finalist) Awards: KAIS Best of IEEE ICDM 2022, KAIS Best of IEEE ICDM 2021, ACM TSAS Best of SIGSpatial2020, ACM TKDD Best of SIGKDD2018, KAIS Best of IEEE ICDM2014
  - Dissertation Ph.D. Students
    - Pengyang Wang (Tenure-track Assistant Professor at Univ of Macau, graduated in 2021)
    - Kunpeng Liu (Tenure-track Assistant Professor at Portland State University, graduated in 2022)
    - Wei Fan (Postdoc at University of Oxford UK, graduated in 2023)
    - Dongjie Wang (Tenure-track Assistant Professor at Univ of Kansas, graduated in 2024)

- Joint Exchange Program Ph.D. Students
  - Meng Xiao, an assistant professor at Chinese Academy of Sciences
  - Ziyue Qiao, an assistant professor at the Great Bay University
  - Lu Jiang, an assistant professor at Dalian Maritime University
  - Pengfei Wang, an associate professor at Chinese Academy of Sciences
  - Peijie Sun, an associate professor at Nanjing University of Posts and Telecommunications



#### Recommender Systems (RecSys)

- Recommender systems: addressing information overload
  - Learning to recommend interesting items to users
- Formulations of RecSys
  - RecSys as rating prediction: predict the ratings of users for items
  - RecSys as matrix completion: complete missing entries of a user-item rating matrix
  - RecSys as link prediction: infer the link between a user and an item
  - RecSys as ranking inference: rank items for users
  - RecSys as similarity computing: compute the similarities between users and items to recommend based on similarities
  - RecSys as matching/pairing problems: match users with items
  - RecSys as allocation problems: allocate/assign items to users
  - RecSys as optimization problems: minimize/maximize the loss/likelihood between ground-truth ratings and predicted ratings



#### Sample RecSys

#### Related to Items You've Viewed

You viewed Customers who viewed this also viewed





\*\*\*\*\*\* (1,975)

\$24.99 \$19.99





Swivel Air...

\$19.95 \$9.50





Grip-iT GPS and ...

\*\*\*\*\*\*\* (110)

\$19.95 \$11.27



Bracketron PHV-202-BL iOttie Easy Flex2 Windshield. \*\*\*\*\*\* (777) \$16.99

> View or edit your browsing history

\$24.95

\*\*\*\*\*\*\*\*\*\*\*\* (733) \$29.95 \$15.48

Windshield with...

Universal Car... \*\*\*\*\*\* (438) \$59.99 \$16.99







|                  | RECOMMENDED ON PLAY                                                  |             |
|------------------|----------------------------------------------------------------------|-------------|
| Impro<br>Add peo | ve these recommendations<br>uple you know to find out what they like | 0           |
| -                | TweetDeck (Twitter, Facebook)<br>Twitter, Inc. 🗢                     | 0           |
|                  | Popular with Foursquare users                                        | Free        |
| a a              | Storm to Pass<br>Atreyu                                              | $  \oslash$ |
|                  | Popular with The Last Fight listeners                                | \$0.99      |
| ALA              | Don't Cry for Me<br>Sharon Sala                                      | $  \oslash$ |
| CAYME            | Top book                                                             | \$5.99      |
|                  | Popular Science<br>Dec 2012                                          | $  \oslash$ |
| 000-             | Popular with similar readers                                         | \$1.99      |
| 2                | Prometheus<br>Science Fiction                                        | $  \oslash$ |
| -                | Top movie rental                                                     | \$3.99      |
| 26               | TiVo                                                                 | 10          |



#### Large Language Models (LLM)

- LLM are advanced AI designed to understand, generate, and interact with human languages
- The interpretation of "LARGE"
  - Large training data, large parameter sizes, large computing power, large downstream tasks (e.g., text understanding, generation, summarization, translation, sentiment, classification, entity recognition, text-to-X/X-to-text generation, ChatBots, QA)
- X as LLM
  - The generation capability of LLM allows us to reformulate any AI task as LLM, including RecSys as LLM



#### Basic Language Models

Auto-Encoding Language Models



• Predict masked tokens using context information.

$$p(x) = \sum_{t=1}^{N} mask_t \log p(t_k | Content)$$

#### Auto-Regressive Language Models



• Predict the current token based on the tokens that appear before (or after) it.

$$p(x) = \sum_{k=1}^{N} \log p(t_k | t_1, \dots, t_{k-1})$$

#### Sample LLMs

- Technical Path
  - Transformer
  - BERT (encoder only)
  - GPT (decoder only)
  - BART (encoder-decoder)
  - Domain-specific LLM
  - Multi-modal LLM
- Selected LLM Tools
  - Llama: open source, tunable (<u>https://www.llama.com/</u>)
  - ChatGPT/o1: strong power, costly (<u>https://openai.com/</u>)
  - Claude: good at coding and reasoning (<u>https://www.anthropic.com/claude</u>)



#### LLM's One-Sided Contributions to RecSys

- LLM for RecSys
  - Reformulating RecSys tasks into LLM token generation (direct item recommendation, rating prediction, sequential recommendation, explainable recommendation)
  - Generalize pre-training and fine-tuning to fine-tune RecSys on specific recommendation datasets/tasks
  - Leverage LLM's comprehension ability to profile user, item, and contexts
  - Leverage LLM's interaction ability to provide continuous refinement with user feedback
  - Leverage LLM's textual generation to provide explainable recommendation
  - LLM as few-shot or zero-shot recommenders



#### Reciprocal Benefits Between LLM and RecSys

- RecSys for LLM
  - User modeling: can inspire us to develop personalized LLM
  - Decision and choice modeling: can inspire us to recommend the most appropriate LLM to a query



#### LLM for RecSys: Graph Knowledge Structured LLM as RecSys



#### A Graph-based View of RecSys

- See user-item interactions or user-item rating matrix as graphs
- Leverage graph structure and topology to enhance RecSys





#### A LLM-based View of RecSys

- Recommending an item as generating a special token
- LLMs can equip RecSys with the ability to connect contextual language cues
  - A customer searches "summer clothing"
    - Classic recsys: receive broad suggestions based on past purchases or generic category trends
    - LLM recsys: analyze not just "summer clothing", but also analyze search queries, product descriptions, and user reviews, to suggest items with specific attributes like "lightweight," "breathable," or "ecofriendly."





### Our AI Task: Integrating the Graph and LLM Views for Enhancing RecSys





#### **Overview of Proposed Solution**





# Step 1: Graph Connectivity Guided Attentive LLM Backbone Model

- Reformulate RecSys into a probabilistic generative problem in response to prompts
- GPT2 as LLM base model
  - The Transformer architecture
  - Pre-train on vast text datasets to predict subsequent words
  - The attention mechanism: determine how much attention to pay to each word when generating the next word in the sequence
- Integrating two types of graph connectivity into attention

Attention $(Q, K, V) = \text{SoftMax}\left(\frac{QK^T}{\sqrt{d_k}} + R\right)V,$ 

- The direct connection: 1/0 binary connection indicator between nodes
- The indirect connection: a normalized shortest path score between nodes computed based on the entire graph

#### Step 2: Pretraining The Backbone Model

- A: Data collection
  - user descriptions
  - item descriptions
  - user reviews for items
  - historical events that users interact (e.g., rate or purchase) with items
- B: Constructing training data with contextual and relational cues
- C: Optimization Objective
  - Given the training data, GPT2 is to predict the next token in the textual sequence
  - The objective is to maximize the token generation likelihood of the training data.

| (8 | ı) User and                                                                                    | /or Item                                                                                                                                     | Contents                                                                                                      | :                                     |                                                                      |                      |              |  |  |
|----|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|----------------------|--------------|--|--|
|    | The title of                                                                                   | : <iter< td=""><td>m_i&gt; i</td><td>is: Title</td><td></td><td></td><td></td></iter<>                                                       | m_i> i                                                                                                        | is: Title                             |                                                                      |                      |              |  |  |
|    | The brand                                                                                      | of <i< td=""><td>tem_i&gt;</td><td>is: Brar</td><td>nd</td><td></td><td></td></i<>                                                           | tem_i>                                                                                                        | is: Brar                              | nd                                                                   |                      |              |  |  |
|    | The catego                                                                                     | ries of                                                                                                                                      | <item_j< td=""><td>&gt; are: C</td><td>ategories</td><td>text</td><td></td></item_j<>                         | > are: C                              | ategories                                                            | text                 |              |  |  |
|    | The description of <item_j> is: Description</item_j>                                           |                                                                                                                                              |                                                                                                               |                                       |                                                                      |                      |              |  |  |
| (1 | o) 1st Order                                                                                   | r User-It                                                                                                                                    | em Relat                                                                                                      | ionship:                              |                                                                      |                      |              |  |  |
|    | <user_i></user_i>                                                                              | wrote t                                                                                                                                      | he follow                                                                                                     | ing review                            | for <i< td=""><td>tem_<i>j</i>&gt; : Re</td><td>eview text</td></i<> | tem_ <i>j</i> > : Re | eview text   |  |  |
|    | <user_i></user_i>                                                                              | explain                                                                                                                                      | s the reas                                                                                                    | son for pur                           | chasing                                                              | <item_j> :</item_j>  | Explain text |  |  |
| (0 | e) 2nd Orde                                                                                    | er User-I                                                                                                                                    | tem Rela                                                                                                      | tionship:                             |                                                                      |                      |              |  |  |
|    | These item                                                                                     | s <ite< td=""><td>m_<i>j</i>&gt; <ite< td=""><td>em_<i>k</i>&gt;</td><td>has th</td><td>e same brand</td><td>: Brand</td></ite<></td></ite<> | m_ <i>j</i> > <ite< td=""><td>em_<i>k</i>&gt;</td><td>has th</td><td>e same brand</td><td>: Brand</td></ite<> | em_ <i>k</i> >                        | has th                                                               | e same brand         | : Brand      |  |  |
|    | These items <pre><item_j> <item_k></item_k></item_j></pre> are all in the category: Categories |                                                                                                                                              |                                                                                                               |                                       |                                                                      |                      |              |  |  |
| (0 | (d) User-Item Interaction:                                                                     |                                                                                                                                              |                                                                                                               |                                       |                                                                      |                      |              |  |  |
|    | <user_i></user_i>                                                                              | has int                                                                                                                                      | eracted w                                                                                                     | vith : <mark><i< mark=""></i<></mark> | tem_ <i>j</i> > <i< td=""><td>item_<i>k</i>&gt;</td><td></td></i<>   | item_ <i>k</i> >     |              |  |  |



# Step 3: Using Personalized Predictive Prompts for Fine-tuning

• A: Personalized Predictive Prompts

| (prompt) | <user_i></user_i> | has interacted with |            | has interacted with <item_j'></item_j'> |  |  |  |  |
|----------|-------------------|---------------------|------------|-----------------------------------------|--|--|--|--|
| The user | will interact     | t with              | : (target) | $R_i$                                   |  |  |  |  |

• B: Optimization Objective: minimizing the rating prediction loss between gold rating and estimated rating



#### Experimental Data

\_

| Dataset               | User   | Item   | Interaction | Content |
|-----------------------|--------|--------|-------------|---------|
| <b>AM-Beauty</b>      | 10,553 | 6,086  | 94,148      | 165,228 |
| AM-Toys               | 11,268 | 7,309  | 95,420      | 170,551 |
| <b>AM-Sports</b>      | 22,686 | 12,301 | 185,718     | 321,887 |
| <b>AM-Luxury</b>      | 2,382  | 1,047  | 21,911      | 15,834  |
| <b>AM-Scientific</b>  | 6,875  | 3,484  | 50,985      | 43,164  |
| <b>AM-Instruments</b> | 20,307 | 7,917  | 183,964     | 143,113 |
| AM-Food               | 95,421 | 32,180 | 834,514     | 691,543 |



#### Baseline Methods

- Multi-VAE [21] is an ID-based collaborative filtering method that completes recommendation tasks by using a polynomial likelihood variational autoencoder to reconstruct ratings.
- MD-CVAE [51] extends Multi-VAE by introducing dual feature VAE on text features to regularize rating reconstruction.
- BERT4REC [36] uses BERT-like mask language modeling to learn user/item embeddings, integrated with a bidirectional self-attention mechanism, for recommendations.
- *S*<sup>3</sup>*Rec* [50] extends BERT4Rec by adding auxiliary tasks such as item attribute prediction to enhance MLM, which can integrate content features for self-supervised learning.
- UniSRec [14] leverages item description texts to learn transferable sequence representations across different domains, employing a lightweight architecture with contrastive pre-training tasks for robust performance.
- FDSA [47] enhances prediction accuracy by not only considering item-level transition patterns but also integrating and weighing heterogeneous item features to capture both explicit and implicit feature-level sequences.
- SASRec [17] captures long-term user behaviors by selectively focusing on relevant past actions.
- GRU4Rec [13] focuses on short session data where traditional matrix factorization fails and demonstrates significant improvements over conventional item-to-item methods.
- LightGCN [12] ignores feature transformation and nonlinear activation to enhance training efficiency and recommendation performance.



#### **Comparison Results of Rating Prediction**

| Dataset               | Metric    | Multi-VAE | MD-CVAE | LightGCN | BERT4Rec | S <sup>3</sup> Rec | UniSRec | FDSA   | SASRec | GRU4Rec | LLM-<br>NoPretrain | LLM-<br>NoFineTune | LLM-<br>NoGKIA | LLM-<br>NoGHIP | Ours   |
|-----------------------|-----------|-----------|---------|----------|----------|--------------------|---------|--------|--------|---------|--------------------|--------------------|----------------|----------------|--------|
|                       | Recall@20 | 0.1295    | 0.1472  | 0.1429   | 0.1126   | 0.1354             | 0.1462  | 0.1447 | 0.1503 | 0.0997  | 0.0464             | 0.0441             | 0.1225         | 0.1267         | 0.1590 |
| AM-Beauty             | Recall@40 | 0.1720    | 0.2058  | 0.1967   | 0.1677   | 0.1789             | 0.1898  | 0.1875 | 0.2018 | 0.1528  | 0.0709             | 0.0691             | 0.1665         | 0.1799         | 0.2177 |
|                       | NDCG@100  | 0.0835    | 0.0871  | 0.0890   | 0.0781   | 0.0867             | 0.0907  | 0.0834 | 0.0929 | 0.0749  | 0.0339             | 0.0323             | 0.0790         | 0.0827         | 0.1029 |
|                       | Recall@20 | 0.1076    | 0.1107  | 0.1096   | 0.0853   | 0.1064             | 0.1110  | 0.0972 | 0.0869 | 0.0657  | 0.0477             | 0.0580             | 0.0896         | 0.0858         | 0.1349 |
| AM-Toys               | Recall@40 | 0.1558    | 0.1678  | 0.1558   | 0.1375   | 0.1524             | 0.1457  | 0.1268 | 0.1146 | 0.0917  | 0.0689             | 0.1003             | 0.1272         | 0.1179         | 0.1873 |
|                       | NDCG@100  | 0.0781    | 0.0812  | 0.0775   | 0.0532   | 0.0665             | 0.0638  | 0.0662 | 0.0525 | 0.0439  | 0.0330             | 0.0481             | 0.0612         | 0.0594         | 0.0876 |
|                       | Recall@20 | 0.0659    | 0.0714  | 0.0677   | 0.0521   | 0.0616             | 0.0714  | 0.0681 | 0.0541 | 0.0720  | 0.0449             | 0.0394             | 0.0555         | 0.0558         | 0.0764 |
| AM-Sports             | Recall@40 | 0.0975    | 0.1180  | 0.0973   | 0.0701   | 0.0813             | 0.1143  | 0.0866 | 0.0739 | 0.1086  | 0.0719             | 0.0613             | 0.0846         | 0.0830         | 0.1240 |
|                       | NDCG@100  | 0.0446    | 0.0514  | 0.0475   | 0.0305   | 0.0438             | 0.0504  | 0.0475 | 0.0361 | 0.0498  | 0.0322             | 0.0278             | 0.0391         | 0.0379         | 0.0535 |
|                       | Recall@20 | 0.2306    | 0.2771  | 0.0000   | 0.2076   | 0.2241             | 0.3091  | 0.2759 | 0.2550 | 0.2126  | 0.1872             | 0.1885             | 0.2474         | 0.2679         | 0.3066 |
| AM-Luxury             | Recall@40 | 0.2724    | 0.3206  | 0.0000   | 0.2404   | 0.2672             | 0.3675  | 0.3176 | 0.3008 | 0.2522  | 0.2233             | 0.2254             | 0.2880         | 0.3028         | 0.3441 |
|                       | NDCG@100  | 0.1697    | 0.2064  | 0.0000   | 0.1617   | 0.1542             | 0.2010  | 0.2107 | 0.1965 | 0.1623  | 0.1223             | 0.1235             | 0.1834         | 0.2065         | 0.2331 |
|                       | Recall@20 | 0.1069    | 0.1389  | 0.0000   | 0.0871   | 0.1089             | 0.1492  | 0.1188 | 0.1298 | 0.0849  | 0.0708             | 0.0668             | 0.1383         | 0.1206         | 0.1480 |
| AM-Scientific         | Recall@40 | 0.1483    | 0.1842  | 0.0000   | 0.1160   | 0.1541             | 0.1954  | 0.1547 | 0.1776 | 0.1204  | 0.1037             | 0.0960             | 0.1822         | 0.1575         | 0.1908 |
|                       | NDCG@100  | 0.0766    | 0.0872  | 0.0000   | 0.0606   | 0.0715             | 0.1056  | 0.0846 | 0.0864 | 0.0594  | 0.0568             | 0.0465             | 0.0940         | 0.0810         | 0.1072 |
|                       | Recall@20 | 0.1096    | 0.1398  | 0.0000   | 0.1183   | 0.1352             | 0.1684  | 0.1382 | 0.1483 | 0.1271  | 0.0766             | 0.0727             | 0.1387         | 0.1426         | 0.1698 |
| <b>AM-Instruments</b> | Recall@40 | 0.1628    | 0.1743  | 0.0000   | 0.1531   | 0.1767             | 0.2239  | 0.1787 | 0.1935 | 0.1660  | 0.1004             | 0.0948             | 0.1741         | 0.1779         | 0.2265 |
|                       | NDCG@100  | 0.0735    | 0.1040  | 0.0000   | 0.0922   | 0.0894             | 0.1075  | 0.1080 | 0.0934 | 0.0998  | 0.0500             | 0.0478             | 0.1042         | 0.1044         | 0.1312 |
|                       | Recall@20 | 0.1062    | 0.1170  | 0.0000   | 0.1036   | 0.1157             | 0.1423  | 0.1099 | 0.1171 | 0.1140  | 0.0224             | 0.0204             | 0.1275         | 0.1264         | 0.1438 |
| AM-Food               | Recall@40 | 0.1317    | 0.1431  | 0.0000   | 0.1284   | 0.1456             | 0.1661  | 0.1317 | 0.1404 | 0.1389  | 0.0299             | 0.0274             | 0.1559         | 0.1487         | 0.1673 |
|                       | NDCG@100  | 0.0727    | 0.0863  | 0.0000   | 0.0835   | 0.0926             | 0.1024  | 0.0904 | 0.0942 | 0.0910  | 0.0153             | 0.0141             | 0.0898         | 0.0963         | 0.1119 |



#### RecSys for LLM: Dynamic Query-LLM Routing as Adaptive Choice Modeling in RecSys





We aim to balance performance, cost, and latency to achieve the trade-off.



#### The AI Task

- The LLM routing task aims to identify the most suitable model for each query in the query stream to
  - maximize response quality
  - minimize cost and latency





#### Challenges

- A dynamic query stream
- Trade-offs among quality, cost, and latency
- Navigating a varying (e.g., new LLM addition or old LLM removal) set of LLM candidates over time
- Enabling continual learning in even after deployment



#### Why Existing Literature Isn't Sufficient

- Non-predictive (Cascading): try small LM first, then decide to switch to LLM or not
  - each query is answered by more than one LM (higher cost, higher delay)
  - the decision maker is another LM, requiring extra time and computing resources
  - when multiple LLMs are involved, it is hard to sequence them (from small to large)
- Predictive



#### Why Existing Literature Isn't Sufficient

- Predictive: predict the features and characteristics of the query
  - classifier: no strong connection between the query and the final label (new LLM -> new label)
  - response quality predictor: **no cost consideration**
  - set-level optimization: some queries may be ignored (users may be disappointed)
  - **common** embedding vector for **different** candidate LMs
  - no time (system information) limitation consideration



#### The Unique Perspective

- Dynamic routing system:
  - Queries arrive sequentially  $\rightarrow$  query level operation
- Predictive pipeline:
  - No LLM inference is needed when routing
- Informative embeddings:
  - Use query tags to enhance the encoder
- Trade-off:
  - Budget: adjust the weight between cost and performance
  - Delay: employ latency penalty when choosing the final LLM



#### Overview of the Proposed Solution





#### Step 1: Tag-Enhanced Query Embedding (1)

• Why using tags as representation of queries? The semantics of query tags closely connect to LLM response quality.



Each color representing a cluster of queries



GPT-4 has a higher frequency of errors (marked as orange) in the legal (marked as red) and math (marked as purple) domains



#### Tag-Enhanced Embedding

BERT-based encoder for sentence embedding

 $e_n = \operatorname{Encoder}(q_n),$ 

- Employ the InsTag [1] to generate fine-grained tags, then cluster them
- Train encoder based on cluster labels

$$\mathcal{L}_{\text{intra}} = -\frac{1}{|Q|} \sum_{i=1}^{|Q|} \log \frac{\exp(\mathbf{e}_i \cdot \boldsymbol{\mu}_i)}{\sum_{j=1}^{|D|} \exp(\mathbf{e}_i \cdot \boldsymbol{\mu}_j)}.$$

$$\mathcal{L}_{\text{inter}} = \frac{1}{|D|} \sum_{j=1}^{|D|} \log \sum_{k \neq j} \exp(\boldsymbol{\mu}_j \cdot \boldsymbol{\mu}_k).$$

[1] Lu, Keming, et al. "# instag: Instruction tagging for analyzing supervised fine-tuning of large language models." The Twelfth International Conference on Learning Representations. 2023.



### Estimating the Accuracy, Latency, Costs of a LLM-Query Pair

• For each LLM, we learn a regression model to predict the response quality of the LLM on a query:

 $\hat{p}_{n,l} = f_l^{\mathsf{rq}}(\mathbf{e}_n; \boldsymbol{\theta}_l^{\mathsf{rq}}),$ 

• Predict response length for estimating total cost:

$$\hat{\operatorname{len}}_{n,l}^{\operatorname{res}} = f_l^{\operatorname{rl}}(\mathbf{e}_n; \boldsymbol{\theta}_l^{\operatorname{rl}}),$$

$$\hat{c}_{n,l} = \underbrace{\underbrace{\operatorname{len}_{n,l}^{\operatorname{prm}} \cdot \operatorname{price}_{l}^{\operatorname{prm}}}_{\operatorname{input cost}} + \underbrace{\underbrace{\operatorname{len}_{n,l}^{\operatorname{res}} \cdot \operatorname{price}_{l}^{\operatorname{res}}}_{\operatorname{output cost}},$$



#### Meta Decision Maker

- Select the most suitable according to the score = trade-offs the predicted quality and cost + potential prediction uncertainty - waiting time
- Balancing of response quality and cost
- Uncertainty is employed to correct errors in predicting
- Time penalty prevents the excessive waiting time



### Continual Learning (1): Offline Training

- Offline Training:
  - Before the deployment
  - Full feedback from all candidate LLMs (arms)
- Predictors are updated:

$$\begin{split} \boldsymbol{\theta}_l^{\mathsf{rq}} &:= \boldsymbol{\theta}_l^{\mathsf{rq}} - \eta_1 \cdot \nabla_{\boldsymbol{\theta}_l^{\mathsf{rq}}} \mathcal{L}(p_{n,l}, \hat{p}_{n,l}), \\ \boldsymbol{\theta}_l^{\mathsf{rl}} &:= \boldsymbol{\theta}_l^{\mathsf{rl}} - \eta_2 \cdot \nabla_{\boldsymbol{\theta}_l^{\mathsf{rl}}} \mathcal{L}(\mathsf{len}_{n,l}^{\mathsf{res}}, \mathsf{len}_{n,l}^{\mathsf{res}}), \\ \mathbf{A}_l &:= \mathbf{A}_l + \mathbf{e}_n^T \cdot \mathbf{e}_n. \end{split}$$



### Continual Learning (2): Online Training

- Online Training:
  - Post-deployment
  - Partial feedback only from the selected and highly-scored LLMs over iterations
- Refined Feedback: the same as offline training

• Binary Feedback: 
$$s'_{n,l} = s_{n,l} + \kappa_{n,l} \cdot s_{n,l}^{df}$$
,  $\left[s_{n,1}^{df}, s_{n,2}^{df}, \dots, s_{n,|M|}^{df}\right] = f^{df}(\mathbf{e}_n; \theta^{df}).$   
 $\kappa_{n,l} = \frac{1}{\operatorname{Var}_n[s_{n,l}^{df}] + \epsilon},$ 

$$\boldsymbol{\theta}^{\mathsf{df}} := \boldsymbol{\theta}^{\mathsf{df}} - \eta_3 \cdot \nabla_{\boldsymbol{\theta}^{\mathsf{df}}} \log \pi(m_n^* \mid \mathbf{e}_n; \boldsymbol{\theta}^{\mathsf{df}}) \cdot r_n. \qquad \nabla_{\boldsymbol{\theta}^{\mathsf{df}}} \log \pi(m_n^* \mid \mathbf{e}_n; \boldsymbol{\theta}^{\mathsf{df}}) = \nabla_{\boldsymbol{\theta}^{\mathsf{df}}} \left( s_{n, m_n^*}^{\mathsf{df}} - \log \sum_{k=1}^L \exp\left(s_{n, k}^{\mathsf{df}}\right) \right)$$



#### Results: Performance

- Our method outperforms baselines and maintains performance when latency is high.
- Under time constraints, performance may decline even with a high budget, as some queries might be ignored due to high latency





#### Results: Performance

 MixLLM performs well even without the time penalty.





#### Results: Continuous training

- In real-world applications, collecting full feedback is difficult and expensive,
- But the responses to queries can serve as partial feedback. And the amount of data during inference will far exceed that during training.
- Continuous training offers improved performance.

| Setting                              | Offline : Online        |                         |                         |  |  |  |  |  |
|--------------------------------------|-------------------------|-------------------------|-------------------------|--|--|--|--|--|
| Setting                              | 80:20                   | 50:50                   | 30:70                   |  |  |  |  |  |
| Without Online Training              | 75.54%                  | 71.98%                  | 69.74%                  |  |  |  |  |  |
| With Refined Feedback<br>Improvement | 76.45%<br><b>1.21</b> % | 72.99%<br><b>1.39</b> % | 71.29%<br><b>2.22</b> % |  |  |  |  |  |
| With Binary Feedback<br>Improvement  | 75.93%<br><b>0.52%</b>  | 72.37%<br><b>0.53</b> % | 70.65%<br><b>1.31%</b>  |  |  |  |  |  |



#### Results: Adaptability

- With the introduction of the powerful Llama 3.1 models, MixLLM achieves 98.55% of GPT-4's response quality while reducing the cost to just 18.36%.
- MixLLM is highly efficient, as the parameters in the original arms remain unchanged.



#### Conclusion Remark



### Q & A

Yanjie Fu Yanjie.fu@asu.edu School of Computing and Al Arizona State University



### Thank You for Listening

Yanjie Fu

Yanjie.fu@asu.edu School of Computing and AI Arizona State University

