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Recommender Systems (RecSys)

 Recommender systems: addressing information overload
* Learning to recommend interesting items to users

* Formulations of RecSys
e RecSys as rating prediction: predict the ratings of users for items
e RecSys as matrix completion: complete missing entries of a user-item rating matrix
e RecSys as link prediction: infer the link between a user and an item
e RecSys as ranking inference: rank items for users

* RecSys as similarity computing: compute the similarities between users and items to
recommend based on similarities

* RecSys as matching/pairing problems: match users with items
* RecSys as allocation problems: allocate/assign items to users

* RecSys as optimization problems: minimize/maximize the loss/likelihood between
ground-truth ratings and predicted ratings
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Sample RecSys
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Large Language Models (LLM)

 LLM are advanced Al designed to understand, generate, and interact
with human languages

 The interpretation of “LARGE”

* Large training data, large parameter sizes, large computing power, large
downstream tasks (e.g., text understanding, generation, summarization,
translation, sentiment, classification, entity recognition, text-to-X/X-to-text

generation, ChatBots, QA)

e Xas LLM
* The generation capability of LLM allows us to reformulate any Al task as LLM,

including RecSys as LLM
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Basic Language Models

Auto-Encoding Language Models

New York

|

Autoencoding

[MASK] [MASK] is a city

* Predict masked tokens using
context information.

N
p(x) = Z mask:log p(t;|Content)
t=1

Auto-Regressive Language Models

York is a city <END>

Autoregressive

1]

New York is a city

Predict the current token based on the
tokens that appear before (or after) it.

N
p(x) = z log p((ti|ts, - » ti—1)
k=1
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Sample LLMs

* Technical Path

* Transformer
BERT (encoder only)
GPT (decoder only)
BART (encoder-decoder)
* Domain-specific LLM
Multi-modal LLM

e Selected LLM Tools

e Llama: open source, tunable (https://www.llama.com/)
* ChatGPT/ol: strong power, costly (https://openai.com/)

e Claude: good at coding and reasoning (https://www.anthropic.com/claude)
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LLM’s One-Sided Contributions to RecSys

e LLM for RecSys

e Reformulating RecSys tasks into LLM token generation (direct item
recommendation, rating prediction, sequential recommendation, explainable
recommendation)

* Generalize pre-training and fine-tuning to fine-tune RecSys on specific
recommendation datasets/tasks

* Leverage LLM’s comprehension ability to profile user, item, and contexts

* Leverage LLM’s interaction ability to provide continuous refinement with user
feedback

* Leverage LLM'’s textual generation to provide explainable recommendation
* LLM as few-shot or zero-shot recommenders
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Reciprocal Benefits Between LLM and RecSys

e RecSys for LLM

e User modeling: can inspire us to develop personalized LLM

* Decision and choice modeling: can inspire us to recommend the most
appropriate LLM to a query
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e

LLM for RecSys: Graph Knowledge Structured LLM as
RecSys

N




A Graph-based View of RecSys

e See user-item interactions or user-item rating matrix as graphs

* Leverage graph structure and topology to enhance RecSys
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A LLM-based View of RecSys

* Recommending an item as generating a
special token

e LLMs can equip RecSys with the ability to ot
connect contextual language cues Movie 2

* A customer searches “summer clothing"

 Classic recsys: receive broad
suggestions based on past purchases
or generic category trends

* LLM recsys: analyze not just movies?
“summer clothing”, but also analyze
search queries, product descriptions,
and user reviews, to suggest items
with specific attributes like
"lightweight," "breathable," or "eco-
friendly."

¢ RetrievalQA

Sure! Based on your
interactions history,

g you might enjoy

Mission Impossible 2.

Can you recommend

LangChain
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Our Al Task: Integrating the Graph and LLM
Views for Enhancing RecSys

% Ira A. Fulton Schools of
Engineering
Arizona State University



Overview of Proposed Solution

1st Order User-Item Relationship Prompt | Next Token Target
<user_i> writes review for <item_j> Prediction List
r 3
Feed Feed
Forward Forward
i Copy t
Masked . Masked
. Weights .
Multi-Head Multi-Head
Self-Attention Self-Attention
( T . | User/It [ T . |
Embeddings < B m— Embeddings
. ) Tokens :
<user_i> has interacted with <item_ j> T . . T
Crowd Contextual Prompts Personalized Predictive Prompts & Target
User-Item Interaction Prompt

(3) Fine-tunine Stage

1) Graph Knowledge Guided Attention —traini .
(1) Grap g (2) Pre-training Stage (4) Prediction

for GPT-2 Backbone
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Step 1: Graph Connectivity Guided Attentive
LLM Backbone Model

* Reformulate RecSys into a probabilistic generative problem in response to
prompts

e GPT2 as LLM base model

* The Transformer architecture
* Pre-train on vast text datasets to predict subsequent words

* The attention mechanism: determine how much attention to pay to each word when
generating the next word in the sequence

* Integrating two types of graph connectivity into attention
Attention(Q, K, V) = SoftMax (Q—\/I;_Z + R) V,
* The direct connection: 1/0 binary connection indicator between nodes

* The indirect connection: a normalized shortest path score between nodes computed
based on the entire graph
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Asi

Step 2: Pretraining The Backbone Model

* A: Data collection
e user descriptions
* item descriptions
* user reviews for items

* historical events that users interact
(e.g., rate or purchase) with items

* B: Constructing training data with
contextual and relational cues

* C: Optimization Objective
* Given the training data, GPT2 is to
predict the next token in the textual
sequence
* The objective is to maximize the
token generation likelihood of the
training data.
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(a) User and/or Item Contents:

The title of  <item_i> is: Title

The brand of <item_i> is: Brand

The categories of <item_j> are: Categories text
The description of ~ <item_j> is: Description

(b) 1st Order User-Item Relationship:

<user_i>  wrote the following review for  <item_j> : Review text
<user_i>  explains the reason for purchasing  <item_j > : Explain text

(¢) 2nd Order User-Item Relationship:

These items  <item_ j> <item_k> ... has the same brand: Brand

These items  <item_ j> <item_k> ... are all in the category: Categories

(d) User-Item Interaction:

<user_i> hasinteracted with : <item_j><item_k> ...



Step 3: Using Personalized Predictive Prompts
for Fine-tuning

* A: Personalized Predictive Prompts

(prompt) <user > hasinteracted with <item_j’'><item_k’>

The user will interact with : (target) R

* B: Optimization Objective: minimizing the rating prediction loss
between gold rating and estimated rating
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Experimental Data
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Dataset User Item Interaction Content
AM-Beauty 10,553 6,086 94,148 165,228
AM-Toys 11,268 7,309 95,420 170,551
AM-Sports 22,686 12,301 185,718 321,887
AM-Luxury 2,382 1,047 21,911 15,834
AM-Scientific 6,875 3,484 50,985 43,164
AM-Instruments 20,307 7,917 183,964 143,113
AM-Food 95,421 32,180 834,514 691,543




Baseline Methods

e Multi-VAE [21] is an ID-based collaborative filtering method that completes recommendation
tasks by using a polynomial likelihood variational autoencoder to reconstruct ratings.

e MD-CVAE [51] extends Multi-VAE by introducing dual feature VAE on text features to
regularize rating reconstruction.

e BERT4REC [36] uses BERT-like mask language modeling to learn user/item embeddings,
integrated with a bidirectional self-attention mechanism, for recommendations.

e S°Rec [50] extends BERT4Rec by adding auxiliary tasks such as item attribute prediction to
enhance MLM, which can integrate content features for self-supervised learning.

e UniSRec [14] leverages item description texts to learn transferable sequence representations
across different domains, employing a lightweight architecture with contrastive pre-training
tasks for robust performance.

e FDSA [47] enhances prediction accuracy by not only considering item-level transition patterns
but also integrating and weighing heterogeneous item features to capture both explicit and
implicit feature-level sequences.

e SASRec [17] captures long-term user behaviors by selectively focusing on relevant past
actions.

e GRU4Rec [13] focuses on short session data where traditional matrix factorization fails and
demonstrates significant improvements over conventional item-to-item methods.

e LightGCN [12] ignores feature transformation and nonlinear activation to enhance training
efficiency and recommendation performance.
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Comparison Results of Rating Prediction

LLM- LLM- LLM- LLM-
Dataset Metri Multi-VAE MD-CVAE LightGCN BERT4R SR UniSR FDSA SASRec GRU4R 0]
atase etre ! 18 e e LnisRec ec " NoPretrain NoFineTune NoGKIA NoGHIP urs
Recall@20 0.1295 0.1472 0.1429 0.1126 0.1354 0.1462  0.1447 0.1503 0.0997 0.0464 0.0441 0.1225 0.1267  0.1590
AM-Beauty Recall@40 0.1720 0.2058 0.1967 0.1677 0.1789  0.1898 0.1875 0.2018 0.1528 0.0709 0.0691 0.1665 0.1799  0.2177
NDCG@100 0.0835 0.0871 0.0890 0.0781 0.0867 0.0907 0.0834 0.0929 0.0749 0.0339 0.0323 0.0790 0.0827  0.1029
Recall@20 0.1076 0.1107 0.1096 0.0853 0.1064 0.1110 0.0972 0.0869 0.0657 0.0477 0.0580 0.08%6 0.0858  0.1349
AM-Toys Recall@40 0.1558 0.1678 0.1558 0.1375 0.1524  0.1457 0.1268 0.1146 0.0917 0.0639 0.1003 0.1272 0.1179  0.1873
NDCG@100 0.0781 0.0812 0.0775 0.0532 0.0665 0.0638 0.0662 0.0525 0.0439 0.0330 0.0481 0.0612 0.0594 0.0876
Recall@20 0.0659 0.0714 0.0677 0.0521 0.0616 0.0714 0.0681 0.0541 0.0720 0.0449 0.0394 0.0555 0.0558 0.0764
AM-Sports Recall@40 0.0975 0.1180 0.0973 0.0701 0.0813 0.1143 0.0866 0.0739 0.1086 0.0719 0.0613 0.0846 0.0830 0.1240
NDCG@100 0.0446 0.0514 0.0475 0.0305 0.0438 0.0504 0.0475 0.0361 0.0498 0.0322 0.0278 0.0391 0.0379  0.0535
Recall@20 0.2306 0.2771 0.0000 0.2076 0.2241 03091 0.2759 0.2550 0.2126 0.1872 0.1885 0.2474 0.2679 0.3066
AM-Luxury Recall@40 0.2724 0.3206 0.0000 0.2404 0.2672 0.3675 0.3176 0.3008 0.2522 0.2233 0.2254 0.2880 0.3028  0.3441
NDCG@100 0.1697 0.2064 0.0000 0.1617 0.1542  0.2010  0.2107  0.1965 0.1623 0.1223 0.1235 0.1834 0.2065 0.2331
Recall@20 0.1069 0.1389 0.0000 0.0871 0.1089 0.1492 0.1188 0.1298 0.0849 0.0708 0.0668 0.1383 0.1206 0.1480
AM-Scientific Recall@40 0.1483 0.1842 0.0000 0.1160 0.1541 0.1954 0.1547 0.1776 0.1204 0.1037 0.0960 0.1822 0.1575 0.1908
NDCG@100 0.0766 0.0872 0.0000 0.0606 0.0715 0.1056  0.0846 0.0864 0.0594 0.0568 0.0465 0.0940 0.0810 0.1072
Recall@20 0.1096 0.1398 0.0000 0.1183 0.1352 0.1684 0.1382 0.1433 0.1271 0.0766 0.0727 0.1387 0.1426  0.1698
AM-Instruments Recall@40 0.1628 0.1743 0.0000 0.1531 0.1767  0.2239 0.1787 0.1935 0.1660 0.1004 0.0948 0.1741 0.1779  0.2265
NDCG@100 0.0735 0.1040 0.0000 0.0922 0.0894 0.1075 0.1080 0.0934 0.0998 0.0500 0.0478 0.1042 0.1044  0.1312
Recall@20 0.1062 0.1170 0.0000 0.1036 0.1157  0.1423  0.1099 0.1171 0.1140 0.0224 0.0204 0.1275 0.1264 0.1438
AM-Food Recall@40 0.1317 0.1431 0.0000 0.1284 0.1456 0.1661 0.1317 0.1404 0.1389 0.0299 0.0274 0.1559 0.1487 0.1673
NDCG@100 0.0727 0.0863 0.0000 0.0835 0.0926  0.1024 0.0904 0.0942 0.0910 0.0153 0.0141 0.0898 0.0963 0.1119
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RecSys for LLM: Dynamic Query-LLM Routing as Adaptive

<

Choice Modeling in RecSys

4




Motivation

Which one
should | choose?

‘ Mistral 7B Llama 2 Chat (70B) GPT-3.5 Turbo GPT-4

X RXX AR XAXX

Response Quality Cost Latency
We want to select the model which At the set level, the comparable response We don't want the query to
can answer the query correctly quality with lower cost is possible gueue for a long time

L 4 4
We aim to balance performance, cost, and latency to achieve the trade-off.
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The Al Task

* The LLM routing task aims to identify the most suitable model for
each query in the query stream to

* maximize response quality

* minimize cost and latency
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Challenges

A dynamic query stream

* Trade-offs among quality, cost, and latency

* Navigating a varying (e.g., new LLM addition or old LLM removal) set
of LLM candidates over time

* Enabling continual learning in even after deployment

% Ira A. Fulton Schools of
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Why Existing Literature Isn’t Sufficient

* Non-predictive (Cascading): try small LM first, then decide to switch

to LLM or not
e each query is answered by more than one LM (higher cost, higher

delay)
* the decision maker is another LM, requiring extra time and

computing resources
 when multiple LLMs are involved, it is hard to sequence them

(from small to large)

e Predictive

% Ira A. Fulton Schools of
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Why Existing Literature Isn’t Sufficient

* Predictive: predict the features and characteristics of the query

* classifier: no strong connection between the query and the final
label (new LLM -> new label)

e response quality predictor: no cost consideration

* set-level optimization: some queries may be ignored (users may be
disappointed)

« common embedding vector for different candidate LMs

* no time (system information) limitation consideration

% Ira A. Fulton Schools of
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The Unique Perspective

* Dynamic routing system:
e Queries arrive sequentially = query level operation

* Predictive pipeline:
* No LLM inference is needed when routing

* Informative embeddings:
* Use query tags to enhance the encoder

e Trade-off:

e Budget: adjust the weight between cost and performance
* Delay: employ latency penalty when choosing the final LLM
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Overview of the Proposed Solution

Tag-Enhanced Embedding LLM-Specific Prediction Decision Making Continual Training
“Response ™,
| Ié&ﬁ%mr | Meta Decision
0 @ "'@““’ %‘“““'“1 Embedding I C! :\@ Maker Choice
! ! t
0N Tags Clusters i | Pfﬁ’tor D — : m N 5:' ______________________________ N
Py >> .? = / \_ Ll y : I @ ;G OfﬂineETraining OnlineiTraining >>
(&) [ ? Embedding . \: ﬂ : I Waiting Time Full Feedback Single Feedback G
= Q = : \— —— I ‘ v L I
uery : : - : :
. || mT5N I | *h g xw :ﬂf?/gu g :
Candidate . w | ! - - Chosen
Projection I ! . '+ User Machine!
LLMs ! . ! L e e LLM
Layer I\ n PP S B S |

----» Training — Inference
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Step 1: Tag-Enhanced Query Embedding (1)

 Why using tags as representation of queries? The semantics of query
tags closely connect to LLM response quality.

t-SNE Component 2
t-SNE Component 2

50
50

tSNE Component 1. 'SNE Coméponent 12;
Each color representing a cluster of queries GPT-4 has a higher frequency of errors (marked as
orange) in the legal (marked as red) and math (marked

as purple) domains
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Tag-Enhanced Embedding

 BERT-based encoder for sentence embedding

e, = Encoder(qy,).

* Employ the InsTag [1] to generate fine-grained tags, then cluster them

* Train encoder based on cluster labels

Q| |D|

1 exp(e; - pt;) 1
Lintra = log L = log e
intra |Q‘ ; Z' |1 (q)(e “J) inter |D| Z (Jﬁ; XP(#J ’J’h)

[1] Lu, Keming, et al. "# instag: Instruction tagging for analyzing supervised fine-tuning of large language models." The Twelfth International Conference on Learning Representations. 2023.
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Estimating the Accuracy, Latency, Costs of a
LLM-Query Pair

* For each LLM, we learn a regression model to predict the response
qguality of the LLM on a query:

ﬁn,ﬁ — fgrq (en; GE‘Q)’
* Predict response length for estimating total cost:

“res __ prl . arl
lenn,.{ _fi (eﬂﬂgt ?

A prm . __prm ‘res . ..:..res
Cnl = lenn?ﬂ price; "+ lenn:,{ price; ",

- —_
i W

input cost output cost
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Meta Decision Maker

 Select the most suitable according to the score = trade-offs the
predicted quality and cost + potential prediction uncertainty - waiting
time

* Balancing of response quality and cost
* Uncertainty is employed to correct errors in predicting
* Time penalty prevents the excessive waiting time
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Continual Learning (1): Offline Training

e Offline Training:
e Before the deployment
e Full feedback from all candidate LLMs (arms)

* Predictors are updated:
ng = BFQ —m- VG;QL:(pn,i: lﬁn,{):

rl . porl res “res
9!! T 6! — N2 Veglﬁ(lenn,i ’ lennJ )1

T
A=A+ e, ‘- e;.
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Continual Learning (2): Online Training

* Online Training:
* Post-deployment
 Partial feedback only from the selected and highly-scored LLMs over

iterations
* Refined Feedback: the same as offline training
* Bi nary FGEd baCk: Sl = St F b "?’F‘f [“‘Efl =‘7‘?sf2v e =‘7‘f:|i-wl} — f9f(e,; 09).
1
Rnl —

Var, [sdf o+ ¢

69" = 99" — 15 - Vgar log m(my, | ey; 0 - 1. V gor log m(my, | en: 09") =

V gat ( noms — 108 Z(“q) nh )
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Results: Performance

* Our method 70001 4 Oracle
outperforms baselines
and maintains - 6000) P
performance when S T
latency is high. < s000 Clude 1
f GF;T-3 v GPT-35
* Under time constraints, © . Coderiams
O 40001 Ll.ama-2-7OB
performance may v Y Memaaxre
. . ] Random Yi-34B-Chat
decline even with a = L Ao
. O 3000 T - Y Oracle
high budget, as some 9 " foueun
qgueries might be } 2 Roermench
. . 2000 FORC
ignored due to high — opun
|atency . | | | | MixLLM
0 5 10 15 20 25

Cost/(Dollars)
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Results: Performance

7000+ % Oracle
__ 6000/
S GPT-4
| -
o /-__________,_...-o-" e WizardLM
. 3 Claude-Instant-V1
* MixLLM performs L 5000 Claue]
> / ;
. = GPT-3 v GPT-35
well even without = Y P4
. S @ Code-Llama
4000 Llama-2-70B
the time penalty. o p T
Q Random Mistral-8x7B
2 ® Yi-34B-Chat
o) ——  AutoMix
O 3000 Y Oracle
$ RouteLLM
V¥ Zooter
ad Random
—— RouterBench
2000+ FORC
OptLLM
= MetalLM
. MixLLM
0 5 10 15 20 25

Cost/(Dollars)
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Results: Continuous training

* In real-world applications, collecting full feedback is difficult and
expensive,

e But the responses to queries can serve as partial feedback. And the
amount of data during inference will far exceed that during training.

* Continuous training offers improved performance.

) Offline : Online
Setting

80:20 50:50 30:70

Without Online Training 75.54% 71.98% 69.74%

With Refined Feedback  76.45% 72.99% 71.29%
Improvement 1.21% 1.39%  2.22%

With Binary Feedback 15.93% T2.37% T0.65%
Improvement 0.52% 053% 1.31%
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Results: Adaptability

* With the introduction 70001 4 Oracle
of the powerful Llama
3.1 models, MixLLM 6000/ GPT-4
. q_) -
achieves 98.55% of = .
1 O Claude-Instant-V1
GPT_.4 > FESpOnse - < 5000 Caudevs
quality while reducing Py . v o
the cost to just 18.36%. S \ :
O 4000 < Miswal78
* MixLLM is highly i y ~ ~T > Mistrolx7a
efficient, as the o e 1705
. O 3000 —— AutoMix
parameters in the § % oracte
. . . RouteLLM
original arms remain M
unchanged. 2000 oot
. L Mo
0 5 10 15 20 25
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Conclusion Remark
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Q&A

Yanjie Fu
Yanjie.fu@asu.edu

School of Computing and Al
Arizona State University
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Thank You for Listening

Yanjie Fu
Yanjie.fu@asu.edu

School of Computing and Al
Arizona State University
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