Demystifying the Node-Level Link Prediction Variability of Graph Neural Networks

Tyler Derr

Network and Data Science Lab Vanderbilt University

> October 25, 2024 OARS Workshop CIKM 2024

Tyler Derr

Assistant Professor of Computer Science at Vanderbilt University

Teaching and Affiliate Faculty
Member, Data Science Institute
Faculty Fellow, The Frist Center
for Autism and Innovation

Personal Homepage: http://www.TylerDerr.com NDS Lab Homepage: http://my.vanderbilt.edu/NDS LinkedIn: http://www.linkedin.com/in/TylersNetwork Twitter: http://www.twitter.com/TylersNetwork

NDS Lab, Vanderbilt, and Nashville

Network and Data Science Lab

Vanderbilt University (The campus is an accredited arboretum with ~200 species of trees and shrubs.)

Nashville, Tennessee, USA

Data Quality-Aware Graph Learning

Data is Connected

Graphs are everywhere in today's connected world ...and can be constructed from (un)structured data

Data fusion

Konstantin Zuev, et al. 2017

Chemical structures

Protein Data Bank

Knowledge extraction

Shoujin Wang et al. 2021

Similarity-based construction

Anand Eijlers et al, 2019

5

Complex social systems

Graph Machine Learning

Real-world data can have data quality challenges...

Garbage in, garbage out

Real-World Graph Data Quality Challenges

What are data quality challenges?

- Imbalanced data
- Biased data
- Noisy outliers
- Limited labels
- Missing values
- Uncertain topology
- Distribution shifts
- ■etc.

How to mitigate these challenges?

Garbage in, garbage out

Model-Centric vs. Data-Centric Al

Harmonization for Improved Ethical AI in Society

Biased Data Aware Graph Learning

Label Quality Aware Graph Learning

> Overcoming Topology Issues in Real-world Graphs

Constructing and Preprocessing Graph Data

Biased Data Aware Graph Learning

Label Quality Aware Graph Learning

> Overcoming Topology Issues in Real-world Graphs

Constructing and Preprocessing Graph Data

Graphs for Recommender Systems

Traditional Recommendation Problems

Image credit: Vedat Gül

Graphs for Session-based Recommendation

Graphs for Fintech

"Stock Selection via Spatiotemporal Hypergraph Attention Network: A Learning to Rank Approach" R. Sawhney et al. (AAAI'21) "THINK: Temporal Hypergraph Hyperbolic Network" S. Agarwal et al. (ICDM'22)

Graphs for Neuroimaging

A Data-Centric AI Approach to Improved Learning in Brain Connectomics

Datasets, code, and documentation is publicly available! https://neurograph.readthedocs.io/

Dataset		Statistics								Tack	
		G	$ N _{avg}$	$ E _{avg}$	d_{max}	d_{avg}	K		1 * 1	Luon	
	HCP-Activity	7443	400	7029.18	153	19.40	0.41	400	7	Graph Classification	
<u>.</u>	HCP-Gender	1078	1000	45578.61	413	45.78	0.46	1000	2	Graph Classification	
Stati	HCP-Age	1065	1000	45588.40	413	45.78	0.46	1000	3	Graph Classification	
	HCP-FI	1071	1000	45573.67	413	45.78	0.46	1000	-	Graph Regression	
	HCP-WM	1078	1000	45578.61	413	45.78	0.46	1000	-	Graph Regression	
	DynHCP-Activity	7443	100	843.04	992	6.22	0.427	100	7	Graph Classification	
nic	DynHCP-Gender	1080	100	874.88	992	9.26	0.439	100	2	Graph Classification	
Dynar	DynHCP-Age	1067	100	875.42	992	9.26	0.439	100	3	Graph Classification	
	DynHCP-FI	1073	100	874.82	992	9.26	0.438	100	-	Graph Regression	
	DynHCP-WM	1080	100	874.88	992	9.26	0.439	100	-	Graph Regression	

NeuroGraph

vG

NeuroGraph

A Python package for fMRI preprocessing and a collection of graph-based Neuroimaging datasets for graph machine learning applications Install: pip install NeuroGraph

NeuroGraphDataset

class NeuroGraphDataset (root: str, name: str, transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None, pre_filter: Optional[Callable] = None) [source]

Bases: InMemoryDataset

The NeuroGraph benchmark datasets from the "NeuroGraph: Benchmarks for Graph Machine Learning in Brain Connectomics" paper. NeuroGraphDataset holds a collection of five neuroimaging graph learning datasets that span multiple categories of demographics, mental states, and cognitive traits. See the documentation and the Github for more details.

Key Insight: Better performance with larger, (sparser) graphs with correlation node features.

				1 (3) 191	0.001	LOT II		C CDI CTDI	C 1 1	0.45	000	<u> </u>	
Dataset			k-GNN	GCN S	AGE UI	niMP Re	SGCN GIN	Cheb	GAT	SGC	General	Avg.	
		COR	R	65.65	68.98	58.70 6	8.33 6	66.06 68.24	63.94	69.49	68.43	64.95	67.30
100ROIs		BOL	D	49.58	50.97	51.67 5	1.30 5	51.34 55.09	53.19	49.95	51.90	51.11	51.11
		CORR+BOLD		52.78	51.02	50.28 5	0.79 5	50.60 54.91	49.44	50.37	51.57	51.30	51.36
400ROIs		CORR		72.21	74.10	61.66 6	8.57	70.09 71.89	58.94	69.35	75.99	73.09	69.56
		BOLD		51.16	51.62	53.94 5	1.39 5	52.31 55.09	49.07	50.46	53.24	53.94	52.22
		COR	R+BOLD	51.53	51.90	52.96 5	1.57 5	52.36 55.56	50.63	52.13	52.08	52.61	53.33
1000ROIs		CORR		78.80	75.19	71.71 7	5.14	78.75 77.22	64.77	71.34	73.75	63.13	72.98
		BOLD		48.15	46.99 4	49.31 5	0.93 4	47.92 56.48	47.22	50.93	49.31	51.62	49.89
		CORR+BOLD		51.30	51.81	51.25 5	1.11 4	49.86 54.35	49.66	51.22	51.34	51.37	51.33
Dataset		k-GNN	GCN	SAGE	UniMP	ResGCN	GIN	Cheb	GAT	SGC	General		
u			Sparse	63.33	72.96	69.35	69.72	68.06	69.72	63.70	70.28	70.37	67.22
tio	100R	OIs	Medium	65.65	69.09	69.70	10.00	44.0.4					6105
jca				05.05	00.90	08.70	68.33	66.06	68.24	63.94	69.49	68.43	64.95
sif			Dense	64.44	68.52	65.00	<u>68.33</u> <u>68.06</u>	<u>66.06</u> 63.70	68.24 66.39	63.94 64.26	69.49 69.72	68.43 68.43	64.95 61.76
ssi			Dense Sparse	64.44 69.95	68.52 77.14	65.00 69.86	68.33 68.06 67.56	66.06 63.70 71.43	68.24 66.39 69.4	63.94 64.26 66.45	69.49 69.72 72.72	68.43 68.43 78.25	64.95 61.76 76.13
Jassi	400R	OIs	Dense Sparse Medium	64.44 69.95 65.65	68.52 77.14 68.98	65.00 69.86 68.70	68.33 68.06 67.56 68.33	66.06 63.70 71.43 66.06	68.24 66.39 69.4 68.24	63.94 64.26 66.45 63.94	69.49 69.72 72.72 69.49	68.43 68.43 78.25 68.43	64.95 61.76 76.13 64.95
r Classi	400R	OIs	Dense Sparse Medium Dense	63.03 64.44 69.95 65.65 71.61	68.58 68.52 77.14 68.98 76.13	65.00 69.86 68.70 62.58	68.33 68.06 67.56 68.33 61.20	66.06 63.70 71.43 66.06 69.77	68.24 66.39 69.4 68.24 73.27	63.94 64.26 66.45 63.94 61.84	69.49 69.72 72.72 69.49 67.83	68.43 68.43 78.25 68.43 74.19	64.95 61.76 76.13 64.95 72.44
ıder Classi	400R	OIs	Dense Sparse Medium Dense Sparse	63.03 64.44 69.95 65.65 71.61 82.13	68.98 68.52 77.14 68.98 76.13 75.46	68.70 65.00 69.86 68.70 62.58 77.69	68.33 68.06 67.56 68.33 61.20 76.67	66.06 63.70 71.43 66.06 69.77 78.33	68.24 66.39 69.4 68.24 73.27 75.56	63.94 64.26 66.45 63.94 61.84 59.07	69.49 69.72 72.72 69.49 67.83 76.2	68.43 68.43 78.25 68.43 74.19 76.48	64.95 61.76 76.13 64.95 72.44 78.89
Gender Classi	400R	OIs ROIs	Dense Sparse Medium Dense Sparse Medium	63.63 64.44 69.95 65.65 71.61 82.13 78.80	68.98 68.52 77.14 68.98 76.13 75.46 75.19	68.70 65.00 69.86 68.70 62.58 77.69 71.71	68.33 68.06 67.56 68.33 61.20 76.67 75.14	66.06 63.70 71.43 66.06 69.77 78.33 78.75	68.24 66.39 69.4 68.24 73.27 75.56 77.22	63.94 64.26 66.45 63.94 61.84 59.07 71.43	69.49 69.72 72.72 69.49 67.83 76.2 71.34	68.43 68.43 78.25 68.43 74.19 76.48 73.75	64.95 61.76 76.13 64.95 72.44 78.89 63.13

"NeuroGraph: Benchmarks for Graph Machine Learning in Brain Connectomics" Anwar Said et al. (**NeurIPS'23)** Now

available

in PyG!

Graphs for Healthcare

	Electron	ic Health	Clinician Task Workflows							
C	Audit log ev	ents performed	d on a patient		_					
Patient ID	User ID	Timestamp	User-EHR interaction type	Session 1	Type 1	→ Type	$2 \rightarrow$	Type 3	\rightarrow	Type 1
1000	А	10:41:00	Measurements reviewed		Tumo 2	Tuma	1	Trme 2		Tumo d
1000	В	10:41:10	Medication prescribed	Session 2	Type 5			Type 2		Type 4
1000	A	10:42:00	Signed an order			:				
1000	С	10:46:00	Lab test results exported							
							CI		bsk	
1000	В	12:46:50	Medication list exported				G	UDal I	ask	
ED workup activity	owsheet filed in Orders ac Automatic act Event was edited i Audits viewing	Narrator knowledged in Narra ions performed by a b n Narrator event log the ED workup ac	A user views one or more cli ator Visit Navigato est practice advisory Best p Event for placing order Best practice advisories get canceled or activity 'Printed/sent by order transmit	cal notes in the notes activity template loaded ctice addisories displayed from various activities pted with no follow-up action so l' event during order transm	elected		2 Type	1	Т	1 ype 4
A Sn	Report viewer fo	r an order used in Sn	Chartrools or reports	t review encounters tab selected iew other orders tab selected		pplicat	ions			

"Inferring EHR Utilization Workflows through Audit Logs" Xinmeng Zhang*, Yuving Zhao*, Chao Yan, Tyler Derr, You Chen (AMIA'22)

Graphs for Biomedical

"Interpretable Chirality-Aware Graph Neural Network for QSAR Modeling in Drug Discovery" Y. Liu, et al. (AAAI'23) "WelQrate: Defining the Gold Standard in Small Molecule Drug Discovery Benchmarking." Y. Liu, et al. (NeurIPS'24)

Biased Data Aware Graph Learning

Label Quality Aware Graph Learning

Overcoming Topology Issues in Real-world Graphs

Constructing and Preprocessing Graph Data

Self-Supervised Learning on Graphs

Less/no labeled data? Can leverage SSL on Graphs.

GNN SSL Pre-Chapter 18 text Tasks **Graph Neural Networks: Self-supervised** Node-level Graph-level Node-graph-level Pretext Tasks Pretext Tasks Pretext Tasks Learning Structure-based Structure-based Patch-graph contrastive learning [22] Connection recovery [3, 5, Degree recovery [13] 10, 23, 16, 28] Subgraph-graph contrastive Lingfei Wu · Peng Cui Jian Pei · Liang Zhao Eds. Topological distance recovlearning [6, 20] Centrality ranking [9] Yu Wang, Wei Jin, and Tyler Derr ery [13, 18] **Graph Neural** Patch-Subgraph contrastive Partition recovery [26] Motif contrastive learning learning [11] [27] Networks Feature-based r-ego subgraph contrastive Contrastive Learning learning [19] Feature completion [7, 13, 15, 24, 26] Attention-based topology Embedding completion [15, GNN-based **Back-propagation** recovery [14] Feature Extractor 17, 24] Topological transformation Clustering recovery [13, 26] recovery [4] Pairwise similarity recovery Foundations, Feature-based Graph Positive/ Negative **Contrastive loss** Frontiers, [12, 13] Augmentation Sampling and Applications Graph contrastive learning Hybrid [7, 25] 2 Springer Node contrastive learning Hybrid GNN-based [1, 29, 30] Feature Extractor Back-propagation Context recovery [7, 13] Prediction recovery [2, 21] Topological distance to Pretrained on Pretext Tasks cluster recovery [13] Pre-training Graph generation recovery **Back-propagation** θ_{ssl} GNN-based Task-specific Pretext Tasks Feature Extractor Adaptation Figure 1: A categorization of SSL pretext tasks used in GNNs. https://github.com/NDS-VU/GNN-SSL-chapter Parameter sharing

Fine-tuning

Task-specific

Adaptation

 θ_{sup}

Downstream Tasks

Back-propagation

GNN-based

Feature Extracto

Yu Wang, Wei Jin, Tyler Derr. "Graph Neural Networks: Self-supervised Learning" (in **Springer Book** – Graph Neural Networks: Foundations, Frontiers, and Applications)

Imbalanced Graph Datasets

Drug Discovery

HTS Hit Ratio 0.05% to 0.5% Bajorath et al. 2002

Brain Classification

TypicalAutism36:1Autism Statistics. 2023

Fake News Detection

0.15% Dou et al. 2021

Malware Detection

0.01% to 2% Android Oak et al. 2019

21

"Imbalanced Graph Classification via Graph-of-Graph Neural Networks" Yu Wang, Yuying Zhao, Neil Shah, Tyler Derr. (arxiv'21, **CIKM'22**) – selected as **Top-10 Most Influential CIKM'22 Papers** by Paper Diges

Classification on Imbalanced Graph Datasets

Yu Wang, Yuying Zhao, Neil Shah, Tyler Derr, (arxiv'21, CIKM'22) - Selected as Top-10 Most Influential CIKM'22 Papers by Paper Diges

Biased Data Aware Graph Learning

Label Quality Aware Graph Learning

> Overcoming Topology Issues in Real-world Graphs

Constructing and Preprocessing Graph Data

Online Dating

ImageImageTinderMatchHingeTinderImageImageTooskImageImageTo

Online dating:

- 15% of Americans (2013)
- Increase to 30% (2019)

Increasing demand on online dating

Information overload

Online Dating Recommender Systems

"Leveraging Opposite Gender Interaction Ratio as a Path towards Fairness in Online Dating Recommendations Based on User Sexual Orientation" Yuying Zhao, Yu Wang, Yi Zhang, Pamela Wisniewski, Charu Aggarwal, Tyler Derr. (AAAI'24)

Ethics of AI in Online Dating

Do users of varying sexual orientation get treated fairly?

Potential Reasons for The Performance Gap

historical interaction behaviors

Solutions

Re-weighting

- In-processing
- Adjust the weights during optimization

Re-ranking

- Post-processing
- Calibration to mitigate inconsistency

"Leveraging Opposite Gender Interaction Ratio as a Path towards Fairness in Online Dating Recommendations Based on User Sexual Orientation" Yuying Zhao, Yu Wang, Yi Zhang, Pamela Wisniewski, Charu Aggarwal, Tyler Derr. (AAAI'24)

Quantity Imbalance vs. User Interest Diversity

Specificultation wingroad data depts of Space for Interests to the space of ondeptate the space of the space

Specific Interests

Broader Interests

"Can One Embedding Fit All? A Multi-Interest Learning Paradigm Towards Improving User Interest Diversity Fairness" Yuying Zhao, Minghua Xu, Huiyuan Chen, Yuzhong Chen, Yiwei Cai, Rashidul Islam, Yu Wang, Tyler Derr (**WWW**'24)

Research Question

Are users of varied interest diversity treated fairly in Recommender Systems?

Specific Interests Broad Interests

(in terms of item categories)

"Can One Embedding Fit All? A Multi-Interest Learning Paradigm Towards Improving User Interest Diversity Fairness" Yuying Zhao, Minghua Xu, Huiyuan Chen, Yuzhong Chen, Yiwei Cai, Rashidul Islam, Yu Wang, Tyler Derr (**WWW**'24)

(C) Across group partitions

"Can One Embedding Fit All? A Multi-Interest Learning Paradigm Towards Improving User Interest Diversity Fairness" Yuying Zhao, Minghua Xu, Huiyuan Chen, Yuzhong Chen, Yiwei Cai, Rashidul Islam, Yu Wang, Tyler Derr (**WWW**'24)

"Can One Embedding Fit All? A Multi-Interest Learning Paradigm Towards Improving User Interest Diversity Fairness" Yuying Zhao, Minghua Xu, Huiyuan Chen, Yuzhong Chen, Yiwei Cai, Rashidul Islam, Yu Wang, Tyler Derr (**WWW**'24)

User Interest Diversity Fairness

"Can One Embedding Fit All? A Multi-Interest Learning Paradigm Towards Improving User Interest Diversity Fairness" Yuying Zhao, Minghua Xu, Huiyuan Chen, Yuzhong Chen, Yiwei Cai, Rashidul Islam, Yu Wang, Tyler Derr (**WWW**'24)

Diverse Topology Issue

Diverse Topology - Motivation

"Can One Embedding Fit All? A Multi-Interest Learning Paradigm Towards Improving User Interest Diversity Fairness" Yuying Zhao, Minghua Xu, Huiyuan Chen, Yuzhong Chen, Yiwei Cai, Rashidul Islam, Yu Wang, Tyler Derr (**WWW**'24)

Diverse Topology - Quantification

"A Topological Perspective on Demystifying GNN-Based Link Prediction Performance." Yu Wang, Tong Zhao, Yuving Zhao, Yunchao Liu, Xuegi Cheng, Neil Shah, Tyler Derr (**ICLR**'24)

Diverse Topology - Quantification

High Overlap

Low Overlap

Can we mathematically measure this overlap?

TC.	Topological	ТСи
	Concentration	$\Gamma C_{i'}$
High	(TC)	Low

"A Topological Perspective on Demystifying GNN-Based Link Prediction Performance." Yu Wang, Tong Zhao, Yuying Zhao, Yunchao Liu, Xuegi Cheng, Neil Shah, Tyler Derr (**ICLR**'24)

Diverse Topology - Quantification

"A Topological Perspective on Demystifying GNN-Based Link Prediction Performance." Yu Wang, Tong Zhao, Yuving Zhao, Yunchao Liu, Xuegi Cheng, Neil Shah, Tyler Derr (**ICLR**'24)

Diverse Topology - Analysis

Nodes with diverse topology have worse recommendation performance

Higher TC, More Overlap, Less Diverseness

"A Topological Perspective on Demystifying GNN-Based Link Prediction Performance." Yu Wang, Tong Zhao, Yuving Zhao, Yunchao Liu, Xuegi Cheng, Neil Shah, Tyler Derr (**ICLR**'24)

Diverse Topology - Analysis

Key insight: TC better defines node-centric LP difficulty than node de ree

"A Topological Perspective on Demystifying GNN-Based Link Prediction Performance." Yu Wang, Tong Zhao, Yuying Zhao, Yunchao Liu, Xueqi Cheng, Neil Shah, Tyler Derr (**ICLR**'24)

Diverse Topology – Optimizing Computation

1. Initialize node embeddings from the *d*-dimensional Multivariate Gaussian Distribution

2. Perform message-passing

3. Embedding similarity computation: how much percentage of message does *i* receives?

"A Topological Perspective on Demystifying GNN-Based Link Prediction Performance." Yu Wang, Tong Zhao, Yuying Zhao, Yunchao Liu, Xuegi Cheng, Neil Shah, Tyler Derr (ICLR'24)

Diverse Topology – Optimizing Computation

Running time of ATC is much shorter than TC

ATC still maintains a good correlation to performance!

"A Topological Perspective on Demystifying GNN-Based Link Prediction Performance." Yu Wang, Tong Zhao, Yuying Zhao, Yunchao Liu, Xuegi Cheng, Neil Shah, Tyler Derr (ICLR'24)

Diverse Topology – Denoising

Maybe someday Bob orders a burger.....

"Collaboration-Aware Graph Neural Network for Recommender System" Yu Wang, Yuying Zhao, Yi Zhang, Tyler Derr. (**WWW'23**) – Selected as **Top-10 Most Influential WWW'23 Papers** by Paper Digest

Diverse Topology – Denoising

One day Bob bought a burger for his friend.

However, the burger cannot represent the eating behavior of Bob, as its an outlier of the whole neighborhood of Bob.

If Bob wants to order food using Uber Eats, it's highly likely he will order more sushi rather than a burger.

Therefore, adding this burger would diversify Bob's interest and it is a noisy interaction.

Diverse Topology – Denoising

"Collaboration-Aware Graph Neural Network for Recommender System" Yu Wang, Yuving Zhao, Yi Zhang, Tyler Derr, (**WWW'23**) – Selected as **Top-10 Most Influential WWW'23 Papers** by Paper Digest

Diverse Topology – Summary

Potential Bias in Graph Data

"Improving Fairness in Graph Neural Networks via Mitigating Sensitive Attribute Leakage" Yu Wang, Yuying Zhao, Yushun Dong, Huiyuan Chen, Jundong Li, Tyler Derr. (**KDD'22**)

Feature Correlation Variation

Motivation

Feature aggregation can cause feature correlation variation

Feature 2: continuous decrease

Feature 3: decrease then increase

"Improving Fairness in Graph Neural Networks via Mitigating Sensitive Attribute Leakage" Yu Wang, Yuying Zhao, Yushun Dong, Huiyuan Chen, Jundong Li, Tyler Derr. (**KDD'22**)

Fairness and Diversity in Online Recommendations

https://github.com/NDS-VU/Fair-Online-Dating-Recommendation

- Multi-objective scenarios
- Personalized sensitive attributes

...

Yuying Zhao, Yu Wang, Lunchao Liu, Xueqi Cheng, Charu Aggarwal, Tyler Derr. "Fairness and Diversity in Recommender Systems: A Survey" (ACM TIST. '24)

Google **Graph Machine Unlearning** right to be forgotten NEWS 1111000 Graph unlearning Method Graph ML Method

unlearned Model Approximate unlearning Removal request Model retrained from

How effective can adversaries leverage unlearning tactics within online social media?

Fairness in machine unlearning...

A Survey on Privacy in Graph Neural Networks: Attacks, Preservation, and Applications

"A Survey of Graph Unlearning" A. Said, et al. (arxiv'23, in submission) "A Survey on Privacy in Graph Neural Networks: Attacks, Preservation, and Applications" Y. Zhang, et al. (IEEE TKDE'24)

scratch

Temporal Knowledge Graphs

Most work on KGs focus on completion via link prediction

However, ...

- Some facts/relations inherently have a limited lifetime
- KG quality is not always perfect and may require unlearning

... and working on linkages with LLMs

Generative Graph Models for Science

From large virtual screening to direct molecular generation

Foundational Graph Generator

Data & Network Collections. Find and interactively VISUALIZE and EXPLORE hundreds of network data

R ANIMAL SOCIAL NETWORKS	816	TINTERACTION NETWORKS	29	SCIENTIFIC COMPUTING	11	Г
BIOLOGICAL NETWORKS	37	X INFRASTRUCTURE NETWORKS	8	SOCIAL NETWORKS	77	
BRAIN NETWORKS	116	S LABELED NETWORKS	105	FACEBOOK NETWORKS	114	52
COLLABORATION NETWORKS	20	MASSIVE NETWORK DATA	21	TECHNOLOGICAL NETWORKS	12	
	646	Sincellaneous networks	2669	WEB GRAPHS	36	
55 CITATION NETWORKS	4	POWER NETWORKS	8	O DYNAMIC NETWORKS	115	Г II 7 л
ECOLOGY NETWORKS	6	PROXIMITY NETWORKS	13	C TEMPORAL REACHABILITY	38	
\$ ECONOMIC NETWORKS	16	🖋 GENERATED GRAPHS	221	m BHOSLIB	36	
EMAIL NETWORKS	6	RECOMMENDATION NETWORKS	36	THE DIMACS	78	Graph Diffusion
🖋 GRAPH 500	8	ROAD NETWORKS	15	€ DIMACS10	84	
HETEROGENEOUS NETWORKS	15	Y RETWEET NETWORKS	34	I NON-RELATIONAL ML DATA	211	

Minimizing User Churn in Online Platforms

WHY DO CUSTOMERS LEAVE? (CUSTOMER VIEW)

Churn rate by ecommerce industry

 Beauty and fitness
 Image: Constraint of the second society

 People and society
 Image: Constraint of the second society

 Food and drinks
 Image: Constraint of the second society

 Books at literature
 Image: Constraint of the second society

 Pets and animals
 Image: Constraint of the second society

 Sports
 Image: Constraint of the second society

 Apparel
 Image: Constraint of the second society

 Consumer electronics
 Image: Constraint of the second society

 Gifts and special events
 Image: Constraint of the second society

Acknowledgements

Thank you!

UNIVERSITY OF

Special thanks to the CIKM'24 OARS Workshop Organizers!

Xiquan Cui

Julian McAuley

Vachik Dave

Khalifeh Al Jadda

Yi Su

Tao Ye

Chip Huyen

