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Data Quality-Aware Graph Learning

Biased Data
Aware Graph
Learning
Label Quality ‘
Aware Graph
Learning ‘
O Overcoming

Topology Issues in
Real-world Graphs

Constructing and
Preprocessing
Graph Data
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Data is Connected

Graphs are everywhere in today’s connected world
...and can be constructed from (un)structured data

Data fusion Knowledge extraction Similarity-based construction

Zhiquan Liu (talk slides)

User-item Interaction Graph

Social Relation Graph Domain Knowledge Graph

Protein Data Bank




Graph Machine Learning

Node-Level Predictions Graph ML Model
r
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Real-world data can have
data quality challenges...

Graph-level Predictions
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Garbage in, garbage out

NDS




Real-World Graph Data Quality Challenges

What are data quality challenges?

" Imbalanced data
"Biased data

" Noisy outliers

= Limited labels

" Missing values

= Uncertain topology
" Distribution shifts
" etc.

How to mitigate Garbage in, garbage out
these challenges?

NDS




Model-Centric vs. Data-Centric Al

Model-Centric

=UE Realize the best dataset for
the given prediction task
Model
architectures ‘ Hyperparameter Data-Centric
tuning
Loss functions/
constraints
etc.
Find the best model for
the given fixed dataset o
Data Organization: Data Cleaning:
Constructing graphs ¢ Confident
learning

Data Integration:
Improving node/edge
features

NDS




Harmonization for Improved Ethical Al in Society

Model-Centric

etc. Realize the best dataset for
the given prediction task
Model
architectures $ Hyperparameter Data-Centric
tuning
Loss functions/
constraints
etc.
Find the best model for
the given fixed dataset Data Organization:
. Data Cleaning:
Constructing graphs Confident
from tabular.data $ :
learning

Data Integration:
Improving features

NDS
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Constructing and
Preprocessing
Graph Data
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Graphs for Recommender Systems

Traditional Recommendation Problems
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Graphs for Session-based Recommendation

Historical Shopping Sessions
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Data fusion with domain
knowledge and global
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across historical sessions:
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Graphs for Fintech
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G ra p hs for Ne uro i m agi ng A Data-Cer)tric. Al A;.)proach to

Improved Learning in Brain Connectomics

Static Graph

4D functional MRI data Static Connectivity Correlation Matrix Representations
: o - @ @ o
Time 1 5) § Ny A —» O. Dense Sparse
Temporal E @ o—°
Resolution = . 4 of ROIs e
— t Window -|- ®
®  Length=T - ®
Connectivity
Strength
- D icC tivit
. ynamic Connectivity
Spatial sliding
Resolution ‘ § . Window
’g ) - i Length =T Dynamic Graph
=] AN al ‘M .
Group-Level Atlas . —> 20 | W ;N Time Representations
Summarizing Regions Standard Minimal o - | ; —
of Interest (ROI) Preprocessing e : to t; t
P ta [1 T ° aes
@ o0 o0

1. Extract ROl time-courses *
2. Correct for: .l lll lll =
+ scanner drifts )
: @ @
+ head motion
3. Z-score (normalization)

Datasets, code, and documentation is publicly available!

NeuroGraph
A Python package for fMRI preprocessing https //n eurogra ph .r'ed dth ed OCs. |O/
and a collection of graph-based Dataset - = Stafistics d d — X Y Task
Neuroimaging datasets for graph |G] [Naug [Elavg maz avg
ging grap HCP-Activity 7443 400 7029.18 153 19.40 0.41 400 7 Graph Classification
machine learning applications o [ HCP-Gender 1078 1000 45578.61 | 413 45.78 | 0.46 | 1000 2 Graph Classification
§ [ HCP-Age 1065 1000 45588.40 | 413 45.78 | 0.46 | 1000 3 Graph Classification
I I @ [THCP-FI 1071 1000 45573.67 | 413 15.78 | 0.46 | 1000 B Graph Regression
HCP-WM 1078 1000 45578.61 | 413 45.78 | 0.46 | 1000 - Graph Regression
DynHCP-Activity | 7443 100 843.04 992 6.22 | 0.427 100 7 Graph Classification
2 [ DynHCP-Gender | 1080 100 874.88 992 9.26 | 0.439 100 2 Graph Classification
E DynHCP-Age 1067 100 875.42 902 9.26 | 0.439 100 3 Graph Classification
& [ DynHCP-FI 1073 100 874.52 992 9.26 | 0.438 100 - Graph Regression
DynHCP-WM 1080 100 874.88 992 9.26 0.439 100 - Graph Regression



https://neurograph.readthedocs.io/

Five new benchmark datasets for

N eu rOG ra p h graph classification/regression!

2 Now
NeuroGraph euroGraphDataset &y PyG available
A Python package for fMRI preprocessing

and a collection of graph-based class NeuroGraphDataset ( root: str, name: str, transform: Optional[Callable] = None, in PVG !
Neuroimaging datasets for graph pre_transform: Optional[Callable] = None, pre_filter: Optional[Callable] =None)  [source]

machine learning applications
Bases: InMemoryDataset

The NeuroGraph benchmark datasets from the “NeuroGraph: Benchmarks for Graph Machine
= Learning in Brain Connectomics” paper. NeuroGraphDataset holds a collection of five
m g E @ neuroimaging graph learning datasets that span multiple categories of demographics, mental
‘P e ‘ - e r AN states, and cognitive traits. See the documentation and the Github for more details.

Key Insight: Better performance with larger, (sparser) graphs with correlation node features.

7t g

Dataset k-GNN GCN SAGE UniMP ResGCN GIN Cheb GAT SGC General Avg.

CORR 65.65 68.98 68.70 68.33 66.06 68.24 63.94 69.49 68.43 64.95 67.30

100ROIs BOLD 49.58 50.97 51.67 51.30 51.34 55.09 53.19 49.95 51.90 51.11 51.11

CORR+BOLD 52.78 51.02 50.28 50.79 50.60 54.91 49.44 50.37 51.57 51.30 51.36

CORR 72.21 74.10 61.66 68.57 70.09 71.89 58.94 69.35 75.99 73.09 69.56

400ROIs BOLD 51.16 51.62 53.94 51.39 52.31 55.09 49.07 50.46 53.24 53.94 52.22

CORR+BOLD 51.53 51.90 52.96 51.57 52.36 55.56 50.63 52.13 52.08 52.61 53.33

CORR 78.80 75.19 .71 75.14 78.75 77.22 64.77 71.34 73.75 63.13 72.98

1000ROIs BOLD 48.15 46.99 49.31 50.93 4792 56.48 47.22 50.93 49.31 51.62 49.89

CORR+BOLD 51.30 51.81 51.25 51.11 49.86 54.35 49.66 51.22 51.34 51.37 51.33

Dataset k—GNN GCN SAGE UniMP ResGCN GIN Cheb GAT SGC General
= Sparse 63.33 72.96 69.35 69.72 68.06 69.72 63.70 70.28 70.37 67.22
£ 100ROIs Medium 65.65 68.98 68.70 68.33 66.06 68.24 63.94 69.49 68.43 64.95
g Dense 64.44 68.52 65.00 68.06 63.70 66.39 64.26 69.72 68.43 61.76
2 Sparse 69.95 77.14 69.86 67.56 71.43 69.4 66.45 7272 78.25 76.13
= 400ROIs Medium 65.65 68.98 68.70 68.33 66.06 68.24 63.94 69.49 68.43 64.95
E Dense 71.61 76.13 62.58 61.20 69.77 73.27 61.84 67.83 74.19 72.44
-u-é Sparse 82.13 75.46 77.69 76.67 78.33 75.56 59.07 76.2 76.48 78.89
é 1000ROIs Medium 78.80 75.19 71.71 75.14 78.75 77.22 71.43 71.34 73.75 63.13
Dense 61.57 73.80 78.86 72.50 78.89 78.70 76.67 71.67 75.25 72.69




Graphs for Healthcare

Electronic Health Records Clinician Task Workflows
|_Audit log cvents performed on a patient _
Session 1 Typel —» Type2 «—» Type3 —» Typel
Patient ID User ID Timestamp User-EHR interaction type
1000 A 10:41:00 Measurements reviewed »
Session 2 Type3 — Typel — Type2 5 Type4d
1000 B 10:41:10 Medication prescribed
1000 A 10:42:00 Signed an order :
1000 C 10:46:00 Lab test results exported
— Global Task
1000 B 12:46:50 Medication list exported .
Interaction Graph
2
ED Narrator . ED Navigator Type 1 » Type 2
Event log loaded in Narrator Sign® note A A
Flowsheet filed in Narrator A user views one or more clisical notes in the notes activity l o ]
Orders acknowlédged in Narrator Visit Navigatortemplate loaded 2 P 1
Automatic actions performag by a best practice advisory Best practice ad#isories displayed > 4
Event was edited idNarrator event log Event for placing orders from various activities -« v
ED workup Bestpractice advisories get canceled or agtepted with no follow-up action selected Type 3 Type 4

activity t
: Audits viewing the@ED workup activity
Storylin€’is vigwed by a user
Report viewa for an order

A SmartText used inéSmartTools or reports
Handoff data for @pitient is viewed
A report for an order-in-a chabreview orders tab was viewed
Edits are madefto handoff"data

A SmartLink used inémartTools or reports

'Printed/sent by order transmittal' event during order transmittal

Chart review encglinters tab selected

Chart review othegiorders tab selected

Chart review noteg/trans tab selected

A report for a note in the chagreview notes tab was viewed

Applications:
Identify bottlenecks, cluster tasks,
identify inconsistencies, ...




Graphs for Biomedical

Molecule Representation

SMILES String Representation
COclcc(ce(c10C)OC)Ce2enc(nc2N)N

Graph Representations

2D Graph 3D Graph
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Virtual Screening
with Graph Machine Learning

Prediction Task:
Active or Inactive

Labeled
Data

Experimental Screening

/

Drug Discovery

WelQrate

Defining the Gold Standard in
Small Molecule Drug Discovery
Benchmarking

Chemical Libraries

) .
Coming soon!
4 Nfc© ‘J;‘ (IQ Just accepted at
>J NeurlPS’24
/
gl HTS generates
) | ‘ ' inherently highly
— imbalanced
High Throughput labeled data
Screening (HTS)
Equipment

N/
q
/>/S

Hit Rate: 0.05 0/0-0.50/0




Label Quality
Aware Graph
Learning

NDS




Self-Supervised Learning on Graphs

Less/no labeled data? Can leverage SSL on Graphs.

Chapter 18

Graph Neural Networks: Self-supervised

Learning
Yu Wang, Wei Jin, and Tyler Derr

Contrastive Learning

@ GNN-based Back-propagation
Feature Extractor
® L )
° ‘ ‘ \
o Graph Positive/ Negative (T
— Augmentation Sampling
GNN-based
Feature Extractor | Back-propagation
° Y L J propag
Pretrained on Pretext Tasks
Pre-training
'] ‘ - \ Back-propagation
[ S S . ) \
[ ] GNN-based Task-specific .
Feature Extractor Adaptation IS |
Parameter sharing | 8
Fine-tuning
GNN-based Task-specific :
4 Feature Extractor Adaptation I
9 Bsup Back-propagation

Yu Wang, Wei

Lingfei Wu - Peng Cui
Jian Pei - Liang Zhao £ds.

Graph Neural
Networks

Foundations,
Frontiers,
and Applications

@ Springer

" Nodelevel |
Pretext Tasks

Structure-based |

N S
Graph-level
Pretext Tasks

text Tasks

GNN SSL Pre- l

*| Structure-based |

|

Degree recovery [13] |

Connection recovery [3, 5,
10, 23, 16, 28]

|

Centrality ranking [9] |

—| Partition recovery [26] |

-

Feature-based |

"115, 24, 26)

Feature completion (7, 13,

117, 24)

Embedding completion [15,

Clustering recovery [13, 26] |

Pairwise similarity recovery
[12, 13]

Hybrid |

Node contrastive learning
[1, 28, 30]

Prediction recovery [2, 21] |

Topological distance recov-
ery [13, 18]

»

|

Motif contrastive learning
[27]

r-ego subgraph contrastive
learning [19]

Attention-based topology
recovery [14]

Topological transformation
recovery [4]

—

+| Feature-based |

ol

Graph contrastive learning
[7, 25]

"+ Hybrid |

-| Context recovery [7, 13] |

.| Topalogical distance to
cluster recovery [13]

ol

Graph generation recovery
18]

"| learning [22]

_[Subgraph-graph contrastive ‘

" learning [11]

T Node-graph-level
Pretext Tasks

Patch-graph contrastive

learning (6, 20]

Patch-Subgraph contrastive

Figure 1: A categorization of SSL pretext tasks used in GNNs.

https://github.com/NDS-VU/GNN-SSL-chapter

ser Book


https://github.com/NDS-VU/GNN-SSL-chapter

Imbalanced Graph Datasets

Drug Discovery Brain Classification

HTS Hit Ratio Typical Autism
0.05% to 0.5% 36 : 1
Bajorath et al. 2002 Autism Statistics. 2023

Fake News Detection Malware Detection

0.15% 0.01% to 2% Android
Oak et al. 2019

Dou et al. 2021



Classification on Imbalanced Graph Datasets

Problem

Drug Discovery

HTS: Hit Ratio
0.05% to 0.5%

ASD Brain Classification

5
§.

Normal Autism
36 3 1

Method

Quantity Augmentation

DHFR Enzyme Classification Results
- LW ——.
07 A e GIN
P *‘ f ‘r ]
£0.6{ €7 7 GIN,s
= ©* --+-- G2GNN
0.5 1 ', (proposed)

1:9 2:8 3:7 4:6 5:5

Imbalance Ratio

Structure Augmentation

Similar Property Principle - Structurally similar
molecules tend to have similar properties
distribution by

1 13 a~reie
oo ona
/O<IG1

Graph-of-
Graphs (GoG)

Conditional distribution
by node masking

~q(1G2)




Overcoming
Topology Issues in
Real-world Graphs

NDS




Online Dating

Online dating:
* 15% of Americans (2013)
* Increase to 30% (2019)

Increasing demand on online dating m
"!E" -

] Information overload

Online Dating Recommender Systems




Ethics of Al in Online Dating

- ~3

Are users in diverse groups treated fairly? ‘ -

User Sexual Orientation
Prior Works o
* Gender a g [V
e Race
- ™ LO OLO o

Religion ° : 2 83
* Subscription Qs 6O homos“exual - .
heterosexual O a }
Potentially Likely
Qatisfied Unsatisfied

Do users of varying sexual orientation get treated fairly?

\ | D g This work focuses on binary case, attributed to limited dataset and does not reflect authors' opinions on gender identity. 25 V




Potential Reasons for The Performance Gap

Reasons Solutions

Group Data Quantity Imbalance

- (’,?)IO Re-weighting

S  In-processing

= oep 54 . o . o c o
28 * Adjust the weights during optimization

=)

G1

Gender Inconsistency Imbalance
(train/recommendation)

s Re-ranking

g * Post-processing

T  (Calibration to mitigate inconsistency
= 00
(b) Gy G; Gs

Increasingly deviates away from
historical interaction behaviors

26



Quantity Imbalance vs. User Interest Diversity

Recommendation Qualitx

Online Dating Recommendation
0.20 -
g 0.15 1 @ |®|
- ) _
0.10 1 N ‘?’ N :.:
0.05 1 - @ - |®|
0.00 - @
G, G Gs
Speci fRumtesttowirdreaddatiedestsrf dypeatice Interests .
to the dame rondguattibpthiansisee. to the opposite Specific Interests Broader Interests

gender




Research Question

Are users of varied interest diversity treated fairly
in Recommender Systems?

Specific Interests  Broad Interests

(in terms of item categories)




—— ml-1m (LightGCN) epinion (LightGCN) —— cosmetics (LightGCN) —— anime (LightGCN)

--=- ml-lm (CAGCN") epinion (CAGCN™) --=- cosmetics (CAGCN") --=- anime (CAGCN")
0.6
0.6
204
. =
. 0.4 0.2
‘,.:-,.
= . . . , .
0.2 - 1 2 3 4 5
- Group (based on Demp)
(B) Across diversity metrics
1 2 3 4 5 e o

Specific Group (based on Dcg¢)  Broad

interests Interests w
(A) Across datasets & models : v—‘

1ty
=
FE

Utili

Different colors: various datasets
Solid and dashed lines: two RS backbones . . . — : i : i .
1 2 3 4 5 1 2 3 4 5

Group (equal user number)  Group (equal diversity range)

(C) Across group partitions




0.6

02 User Interest Diversity Unfairness

T Users with high interest diversity have lower
recommendation performance.
(A)
This unfairness 1s consistent across datasets, models,
diversity definitions, group partitions.

& 0.2

1 2 3 4 5 1 2 3 4 5
Group (equal user number)  Group (equal diversity range)

(C) Across group partitions

30



User Interest Diversity Fairness

LightGCN CAGCN™ Better Ahgnment
0.75 .
_ 075 _
: 5
g 205
£ 0.50- g 050
2 !
<025 < 025 —
2 Multi
0.00 0.00
| 2 3 4 5
Group
- * L3 L3 °
4.0 1.8 Multi-CAGCN Implicit Interest Matching
3 = _a_
-;'ﬂ: 3.3 'dﬂ: 3_6_- . - - k___.-\:& -‘."H._HH‘H . .
E 2 E / S ) N 0 Diverse O @ |
w = 34 y TTa Interests B
: 3.4 & ‘r;f.,,f —e— Dcat .A @ ) A @ ]
= 3.2 35" 3.2; N Demb | Larger
- 3.0 - 3.0 Interest
" 2 3 4 5 | 3 3 p 3 Number B @
Group Group B
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Diverse Topology Issue

Problem Metric —precision Pl mm ONDCG W Rll W MRR i
f.;:;--\l o 014
,:,, | @o.lz
= Specific L
' Topology = o
0.02
0.00- [0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8, 1.0]
r!% Nodes Group by TC™ >
Less and Less Diverse, More and More Overlap
Jack E Our original version TC; = ATC; Proposed approximated version
- Diverse
- &) Topology Application
L 1 :
—
0.6
0.5
£ o4 The burger
=03 . .
= is an outlier
0.2
0.1
1 2 3 4 5
Group, left to right, specific to broad

NDS



Diverse Topology - Motivation

Specific > Diverse
e qn
N
'J
.-fffﬁ \
-
Sushi Lover Sushi & Ramen Lover Not Sure
0.6
—&— ml-1m
______ epinion
HHHHHHH —&— cosmetics
04 @00 TS TS .
= D e e anime
- B /===, e .. TTms=T=
D -------------------------
070/ e —

| 2 3 4 5




Diverse Topology - Quantification

Low Diversity

High Overlap

High Diversity

Low Overlap



Diverse Topology - Quantification

D
DR DD

@&

High Overlap Low Overlap

Can we mathematically measure this overlap?

_ Topological _
T.C L Concentration TC i’
High (TC) Low

NDSE



Diverse Topology - Quantification

Cycles can
quantify
TC/Overlap/
Diverseness!

NDSE



Diverse Topology - Analysis

Hard to predict preference of
People with diverse interests

\
1@ V\\

B Precision W9 F1 WS NDCG WM Recall ®88 MRR W Hits"
0.16 1
0.144
=]
]
@0.12
€ 010 Nodes with diverse
£ 008 topology have worse
T
< 006 recommendation
-]
B 0,04+ performance
0.02 1
0.00 -
[0, 0.2) [0.2,0.4) [0.4,0.6) [0.6, 0.8) [0.8,1.0]

Higher TC, More Overlap, Less Diverseness




Diverse Topology - Analysis

!
Within Network Across Datasets
M Precision FI M NDCG BN Recall SN MRR B [lits" #Collab
0.35
a
G 0.30 o
: " Voles b=
s o R -
E g 0.25 aReptile ‘=
£02 = =
E 0.20 aCora
0.15 “iteseel
09 [0,0.2) [0.2,0.4) [0.4. 0.6) [0.6. 0.8) [0.8, 1] afiteecee
Train-TC Group (all nodes) 0.10 wPubmed
’ 0.1 0.2 0.3 0.4 0.5

Train-TC

Key insight: TC better defines node-centric LP difficulty than node de ree

B Precision F1 BN NDCG B Recall s MRR m His"

—
[=3
(=}

e
“
w

g
I
S

Performance@10

=
)
w

[0, 20) [20, 40) [40, 60) [60, 80) [80, 100)
Train Degree Group (all nodes)

(c) Pubmed — All nodes

[100, 120)

e
[

S
)

Performance@10

=

e
o

0,2 [24) [46) [68 [810) [10,12) [12,14) [14,16)
Train Degree Group (low degree nodes)

(16, 18) [18,20)

(d) Pubmed - Low degree nodes

NDS




Diverse Topology — Optimizing Computation

K: size of the cycle
|V|: # of Nodes

Quadratic! O(K?|V||€]) |&]|: # of Edges

K
R ~ V(04,29 N = E ) a AR
=1

@ TC; based on cycle counting

1. Initialize node embeddings from the d-dimensional Multivariate Gaussian Distribution

2. Perform message-passing

NDS



Diverse Topology — Optimizing Computation

—®— C(iteseer-TC —@— Collab-TC —@— Reptile-TC
== Citeseer - ATC == C(Collab - ATC = - Reptile - ATC

= 2 0.5
]
£ E
o s
= -
= 2
= =
= 0 E
< S
oL =
E o
] 2 3 4 5 2 .
Number of Hops Number of Hops

Running time of ATC is much shorter than TC

ATC still maintains a good correlation to performance!




Diverse Topology — Denoising

Specific > Diverse
Bob : !;‘ LS E
Across n o ,
Different r— -
Users - -
Within one Maybe someday Bob
User

orders a burger......




Diverse Topology — Denoising

—

1
|
|
!
|
|
|
I‘—
|
|
|
!
I
|
l

Bob ffr%
L
\ | I —
\
\
\ —
\
\
\
Y LN

One day Bob bought a burger for his friend.

However, the burger cannot represent the eating behavior of
Bob, as its an outlier of the whole neighborhood of Bob.

If Bob wants to order food using Uber Eats, it’s highly likely he will
order more sushi rather than a burger.

Therefore, adding this burger would diversify Bob’s interest and it
is a noisy interaction.




Diverse Topology — Denoising

Bob " %

=
Q7
% . ?:ﬁ _ MF Up 10% in Recall@20
g NGCF 0
r% @ e 2 & LightGCN 80% speedup

CAGCN-sc
CAGCN*-5c
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Diverse Topology — Summary

Problem Metric —precision Pl mm ONDCG W Rll W MRR i
f.;:;--\l o 014
,:,, | @o.lz
= Specific L
' Topology = o
0.02
0.00- [0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8, 1.0]
r!% Nodes Group by TC™ >
Less and Less Diverse, More and More Overlap
Jack E Our original version TC; = ATC; Proposed approximated version
- Diverse
- &) Topology Application
L 1 :
—
0.6
0.5
£ o4 The burger
=03 . .
= is an outlier
0.2
0.1
1 2 3 4 5
Group, left to right, specific to broad

NDS



Biased Data
Aware Graph
Learning
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Potential Bias in Graph Data

Problem Discriminative Feature Bias

X No-Bail U I - i_;_:m_t_ﬁq_;:w_l %
)

4 Bail

—— — — —— — —

.. > |
— w GI'OU—p 1 Race Records Gender Intent L

’.m Group 2
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Feature Correlation Variation

Motivation
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Fairness and Diversity in Online Recommendations

https://github.com/NDS-VU/Fair-Online-Dating-Recommendation

[ (a) Fairness in RS ]

/

=
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—-‘ Feature modification [23]

|

Diversity Measu rements)

——| Other forms [14, 36]

User-level |

Quality Discrepancy [47, 71,
76, 93, 121]

Instance distribution adjust-
ment [41, 94]

s

t+ In-processing ‘

Optimization with reg-
t—| ularization/constraints
[64, 65, 111, 132, 143]

Discriminator Performance

[78, 124, 127]

Adversarial learning [34, 40,
55, 116, 124]

+

Post-processing ‘

—-—‘ Slot-wise re-ranking [66, 107] |
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»| Group-wise re-ranking [47, 76] ‘

Multi-objective scenarios
Personalized sensitive attributes
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Individual diversity
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Diversity Methods j

144]

Re-ranking [67, 98, 105, 108,
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Distance-based [57, 67, 67, 97,
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https://github.com/NDS-VU/Fair-Online-Dating-Recommendation
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Graph Machine Unlearning / Google
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How effective can adversaries
leverage unlearning tactics
within online social media? o0

Fairness in machine unlearning...

A Survey on Privacy in Graph Neural Networks:
Attacks, Preservatlon and Appllcatlons

“A Survey of Graph Unlearning” A. Said, et al. (arxiv’23, in submission)
“A Survey on Privacy in Graph Neural Networks: Attacks, Preservation, and Applications” Y. Zhang




Temporal Knowledge Graphs

Most work on KGs focus on completion via link prediction
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However, ...
= Some facts/relations inherently have a limited lifetime

= KG quality is not always perfect and may require unlearning
.. and working on linkages with LLMs
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Generative Graph Models for Science

From large virtual screening to direct molecular generation
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Minimizing User Churn in Online Platforms

WHY DO CUSTOMERS LEAVE?
TOMER i
(cusTo VIEW) Churn rate by ecommerce industry
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Computational graph
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