Exploring the Potential of Large Language Models (LLMs) in Learning on Graphs

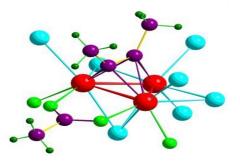
Jiliang Tang

University Foundation Professor Michigan State University tangjili@msu.edu

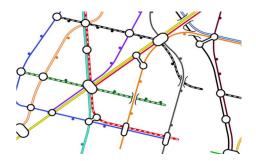
Exploring the Potential of Large Language Models (LLMs) in Learning on Graphs, arXiv:2307.03393

Graph data are everywhere

Social Graphs



Molecular Graphs

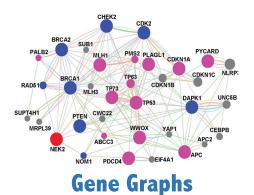


Transportation Graphs

Web Graphs

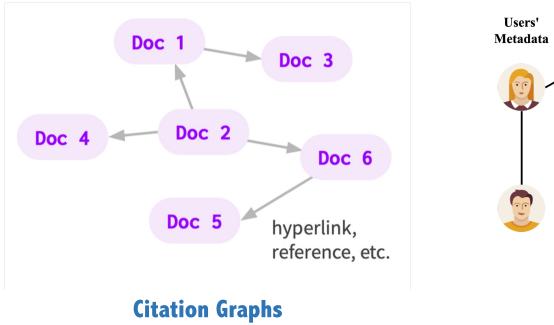


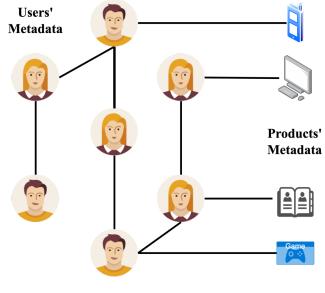
Brain Graphs



Text-attributed graphs(TAGs)

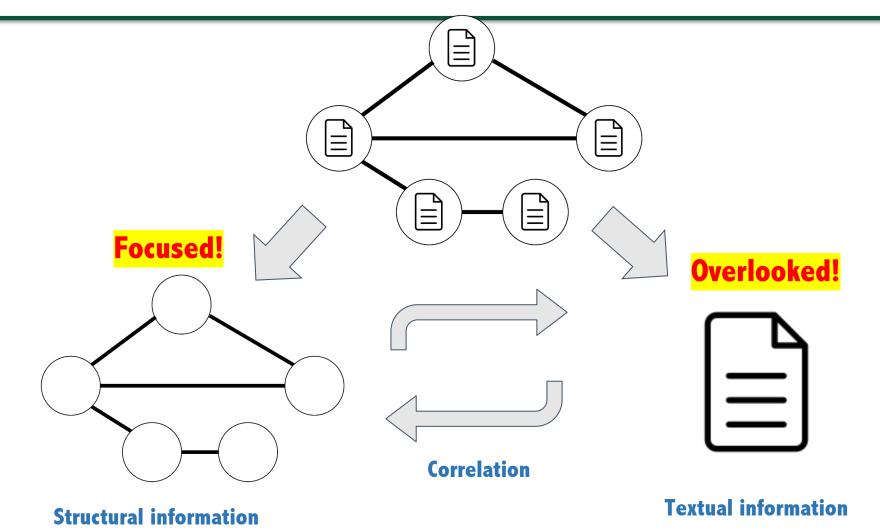
Nodes in graphs are usually associated with text attributes





E-commerce Graphs

How to effectively process TAGs?



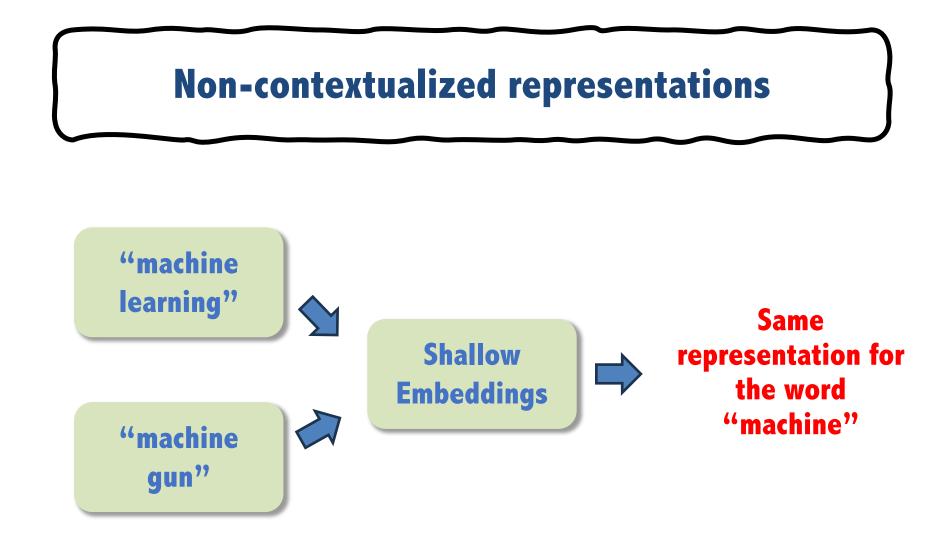
Popular benchmarks majorly use shallow embeddings

The impact of different embeddings on downstream tasks is often overlooked

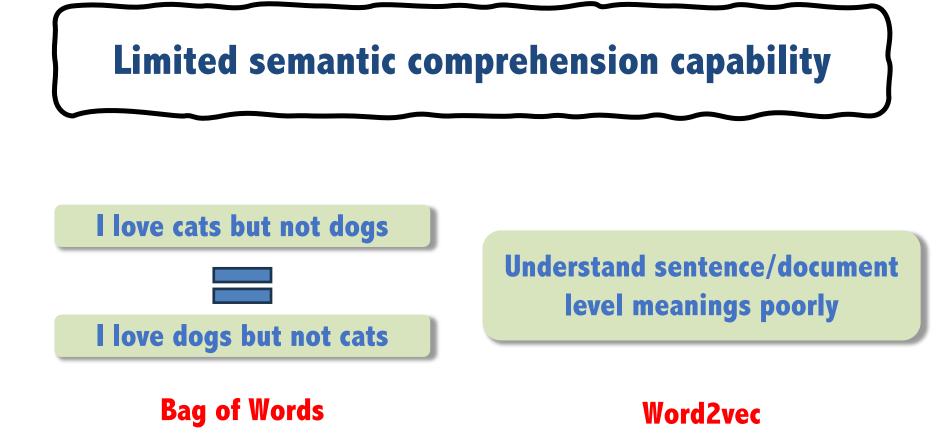
These shallow embeddings present potential limitations

Data Science and Engineering Lab

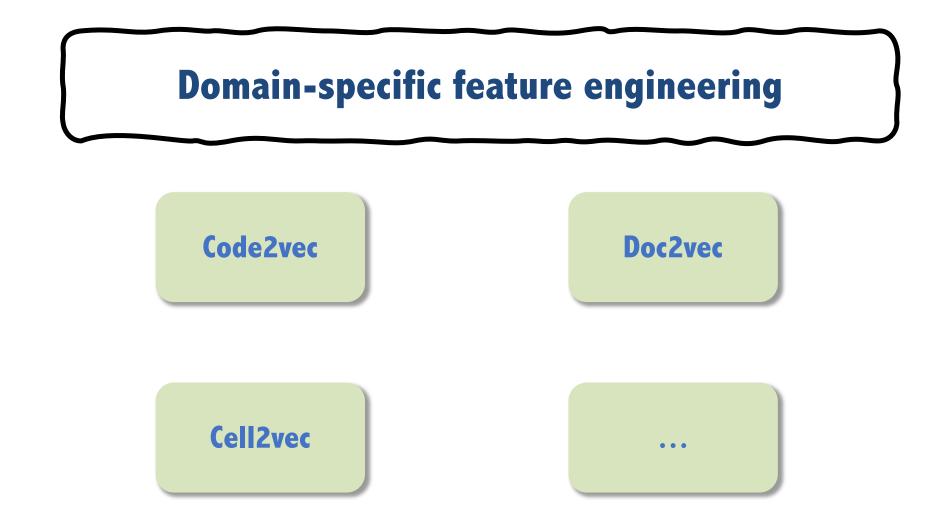
Potential limitations of shallow embeddings



Potential limitations of shallow embeddings



Potential limitations of shallow embeddings



Large Language Models (LLMs)

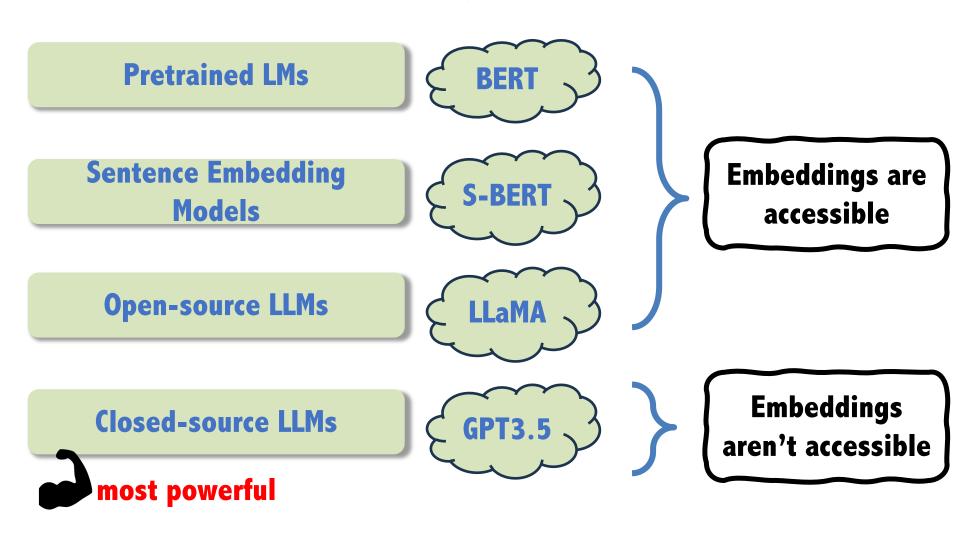
LLMs' capability can help us mitigate these limitations

Superior semantic comprehension capability

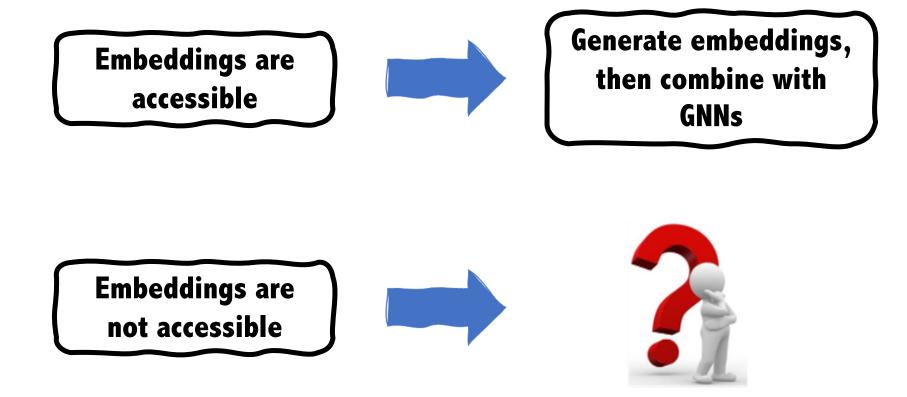
Better generalization across different tasks

New challenges

How to effectively leverage various types of LLMs?

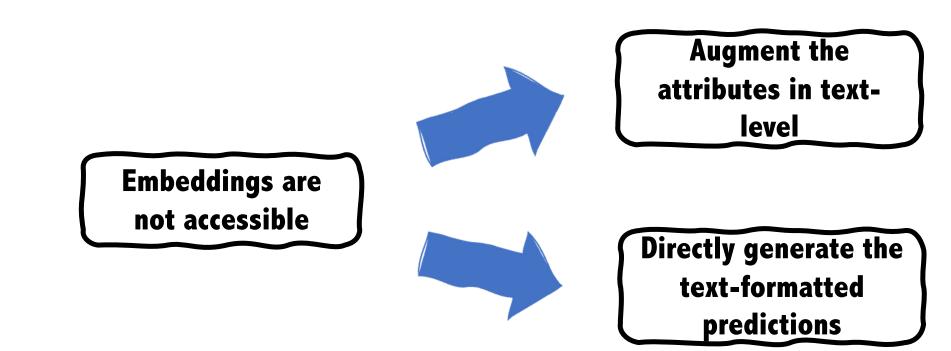


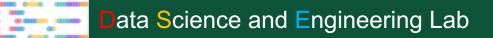
Design pipelines for different models



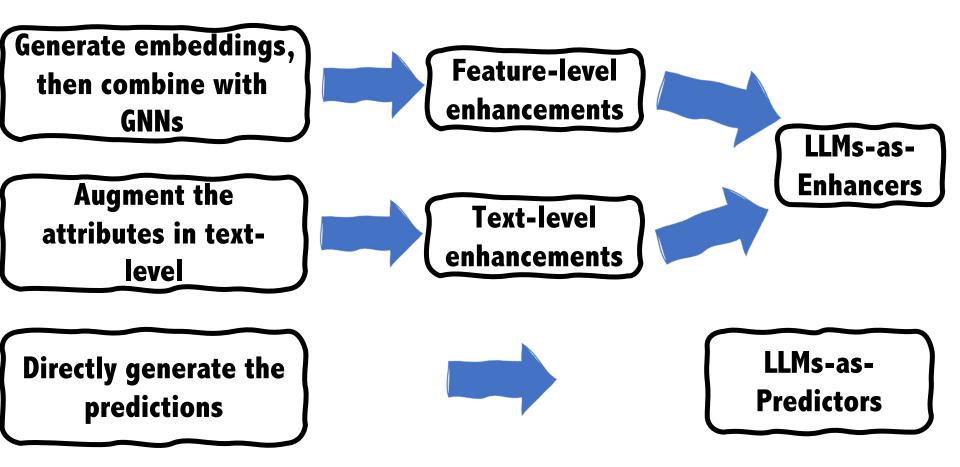


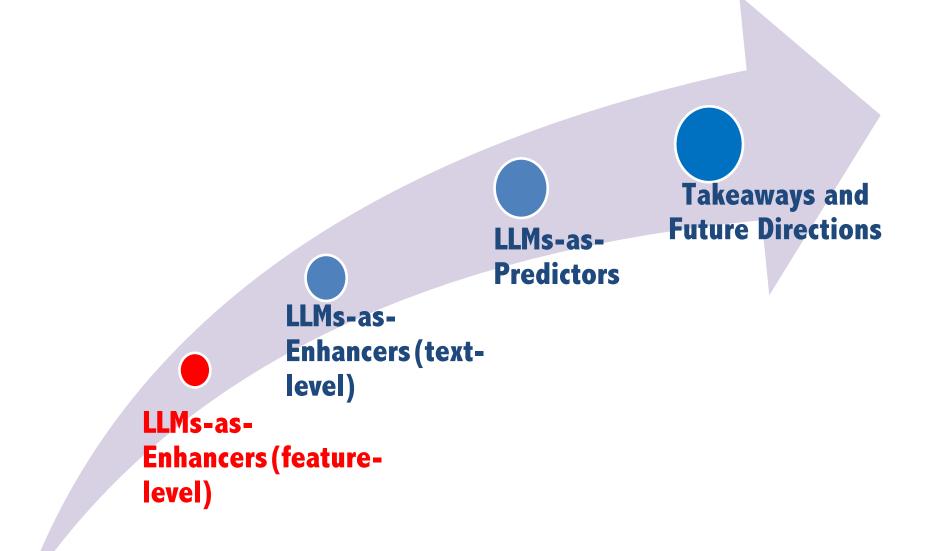
Design pipelines for different models



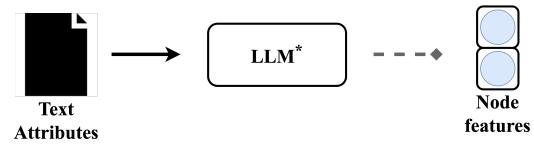


Design pipelines for different models

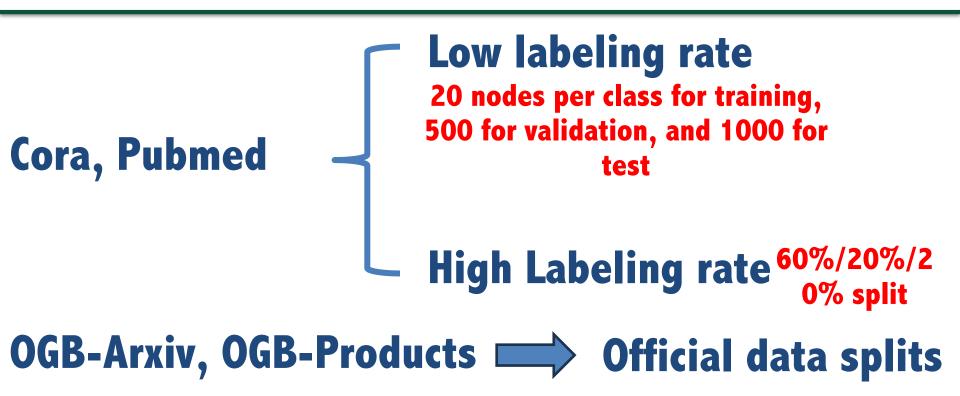




Feature-level enhancements



LLM* : LLM with accessible embeddings



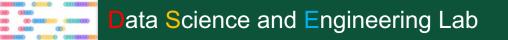
We adopt node classification as the downstream tasks to evaluate different strategies

Feature-level enhancements

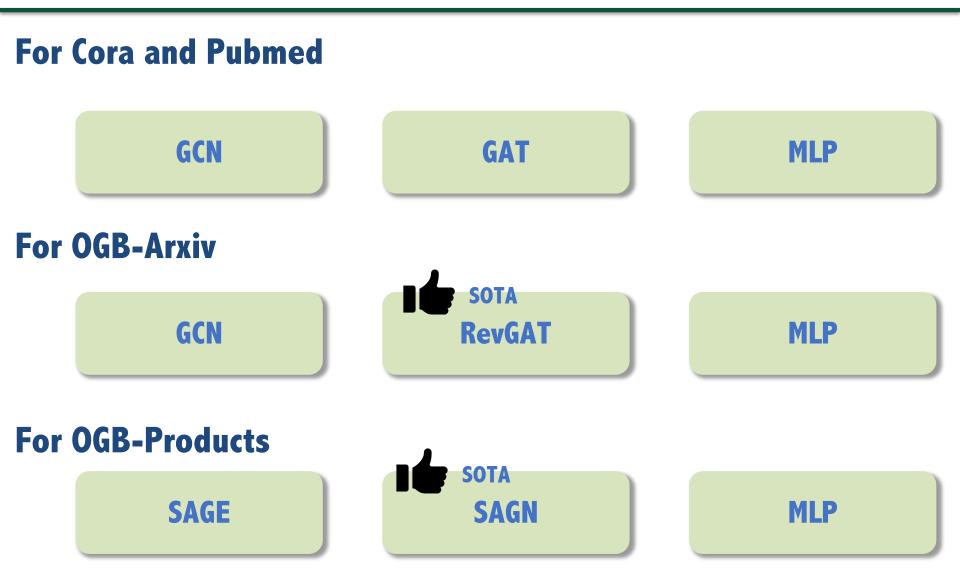
Selection of GNNs

Selection of LLMs

Selection of integration strategies

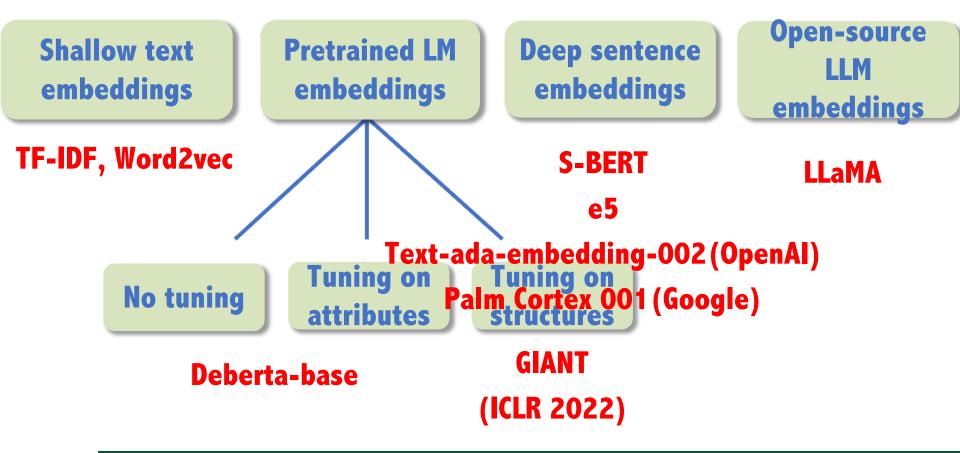


Selection of GNNs



Selection of LLMs

We aim to check the influence of different textual embeddings



Selection of integration strategies

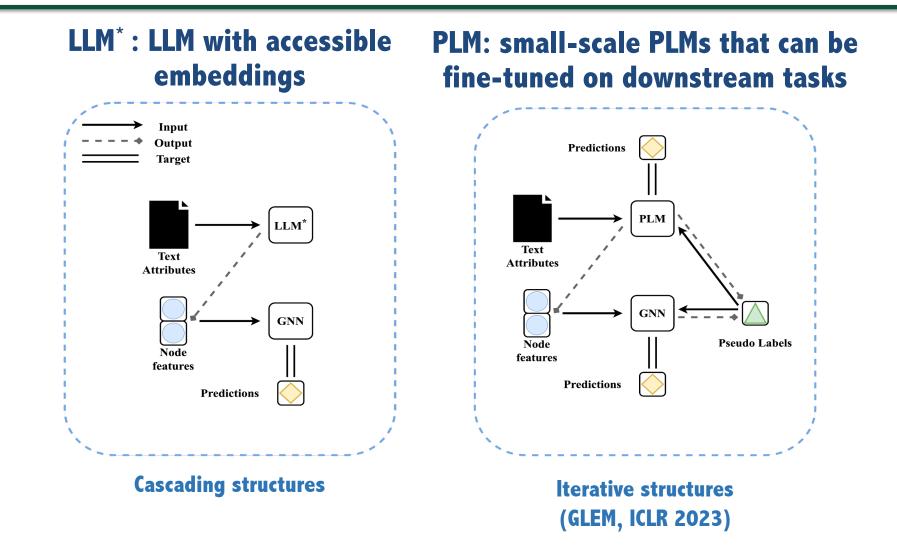


Table 3: Experimental results for feature-level *LLMs-as-Enhancers* on OGBN-ARXIV and OGBN-PRODUCTS dataset. MLPs do not provide structural information so it's meaningless to co-train it with PLM, thus we don't show the performance. We use yellow to denote the best performance under a specific GNN/MLP model, green the second best one, and pink the third best one.

			OGBN-AR	XIV			Ogbn-prod	UCTS	
		GCN	MLP	RevGAT	Rank	SAGE	SAGN	MLP	Rank
	Non-contextualized Shall	w Embeddings	5						
	TF-IDF	72.23 ± 0.21	66.60 ± 0.25	75.16 ± 0.14	8	79.73 ± 0.48	84.40 ± 0.07	64.42 ± 0.18	7
	Word2Vec	71.74 ± 0.29	55.50 ± 0.23	73.78 ± 0.19	9	81.33 ± 0.79	84.12 ± 0.18	69.27 ± 0.54	8
	PLM/LLM Embeddings v	ithout Fine-tu	ning						
	Deberta-base	45.70 ± 5.59	40.33 ± 4.53	71.20 ± 0.48	10	62.03 ± 8.82	74.90 ± 0.48	7.18 ± 1.09	10
Constitute	Local Sentence Embeddin	g Models							
Cascading	Sentence-BERT(MiniLM)	73.10 ± 0.25	71.62 ± 0.10	76.94 ± 0.11	2	82.51 ± 0.53	84.79 ± 0.23	72.73 ± 0.34	6
Structure	e5-large	73.74 ± 0.12	72.75 ± 0.00	76.59 ± 0.44	4	82.46 ± 0.91	85.47 ± 0.21	77.49 ± 0.29	3
	Online Sentence Embeddi	ng Models		-					
	text-ada-embedding-002	72.76 ± 0.23	72.17 ± 0.00	76.64 ± 0.20	3	82.90 ± 0.42	85.20 ± 0.19	76.42 ± 0.31	4
	Fine-tuned PLM Embeddi	ings							
	Fine-tuned Deberta-base	74.65 ± 0.12	72.90 ± 0.11	75.80 ± 0.39	6	82.15 ± 0.16	84.01 ± 0.05	79.08 ± 0.23	9
	Othong								

Others

From shallow embeddings to PLM embeddings, the gain for MLPs is significant while it is limited for GNNs

Sentence embeddings are surprisingly effective

Sentence embedding and GNNs with cascading structures can achieve similar performance to GIANT (require task-specific SSL) and GLEM (require LM-GNN co-training)

		GCN	MLP	RevGAT	Rank	SAGE	SAGN	MLP	Rank	
	Non-contextualized Shallo	w Embeddings	1							
	TF-IDF	72.23 ± 0.21	66.60 ± 0.25	75.16 ± 0.14	8	79.73 ± 0.48	84.40 ± 0.07	64.42 ± 0.18	7	
	Word2Vec	71.74 ± 0.29	55.50 ± 0.23	73.78 ± 0.19	9	81.33 ± 0.79	84.12 ± 0.18	69.27 ± 0.54	8	
	PLM/LLM Embeddings v	vithout Fine-tu	ning							
	Deberta-base	45.70 ± 5.59	40.33 ± 4.53	71.20 ± 0.48	10	62.03 ± 8.82	74.90 ± 0.48	7.18 ± 1.09	10	
Canadian	Local Sontance Embaddin	g Models								
Cascading	Sentence-BERT(MiniLM)	73.10 ± 0.25	71.62 ± 0.10	76.94 ± 0.11	2	82.51 ± 0.53	84.79 ± 0.23	72.73 ± 0.34	6	
<u>Structure</u>	e5-large	73.74 ± 0.12	72.75 ± 0.00	76.59 ± 0.44	4	82.46 ± 0.91	85.47 ± 0.21	77.49 ± 0.29	3	
	Online Sentence Embedding Models									
	text-ada-embedding-002	72.76 ± 0.23	72.17 ± 0.00	76.64 ± 0.20	3	82.90 ± 0.42	85.20 ± 0.19	76.42 ± 0.31	4	
	Fine-tuned PLM Embedd	ings								
	Fine-tuned Deberta-base	74.65 ± 0.12	72.90 ± 0.11	75.80 ± 0.39	6	82.15 ± 0.16	84.01 ± 0.05	79.08 ± 0.23	9	
	Others									
	GIANT	73.29 ± 0.10	73.06 ± 0.11	75.90 ± 0.19	5	83.16 ± 0.19	86.67 ± 0.09	79.82 ± 0.07	2	
Iterative	GLEM-GNN	75.93 ± 0.19	N/A	76.97 ± 0.19	1	83.16 ± 0.09	87.36 ± 0.07	N/A	1	
Structure	GLEM-LM	75.71 ± 0.24	N/A	75.45 ± 0.12	7	81.25 ± 0.15	84.83 ± 0.04	N/A	5	

Table 1: Experimental results for feature-level *LLMs-as-Enhancer* on CORA and PUBMED with a low labeling ratio. Since MLPs do not provide structural information, it is meaningless to co-train it with PLM (with their performance shown as N/A). We use yellow to denote the best performance under a specific GNN/MLP model, green the second best one, and pink the third best one.

			CORA				PUBMEI)				
		GCN	GAT	MLP	Rank	GCN	GAT	MLP	Rank			
	Non-contextualized Shallow Embeddings											
	TF-IDF	81.99 ± 0.63	82.30 ± 0.65	67.18 ± 1.01	4	78.86 ± 2.00	77.65 ± 0.91	71.07 ± 0.78	5			
	Word2Vec	74.01 ± 1.24	72.32 ± 0.17	55.34 ± 1.31	6	70.10 ± 1.80	69.30 ± 0.66	63.48 ± 0.54	7			
	PLM/LLM Embeddings w	PLM/LLM Embeddings without Fine-tuning										
	Deberta-base	48.49 ± 1.86	51.02 ± 1.22	30.40 ± 0.57	10	62.08 ± 0.06	62.63 ± 0.27	53.50 ± 0.43	10			
Cascading	LLama 7B	66.80 ± 2.20	59.74 ± 1.53	52.88 ± 1.96	7	73.53 ± 0.06	67.52 ± 0.07	66.07 ± 0.56	6			
Structure	Local Sentence Embedding Models											
	Sentence-BERT(MiniLM)	82.20 ± 0.49	82.77 ± 0.59	74.26 ± 1.44	2	81.01 ± 1.32	79.08 ± 0.07	76.66 ± 0.50	2			
	e5-large	82.56 ± 0.73	81.62 ± 1.09	74.26 ± 0.93	4	82.63 ± 1.13	79.67 ± 0.80	80.38 ± 1.94	1			
	Online Sentence Embeddi	ng Models										
	text-ada-embedding-002	82.72 ± 0.69	82.51 ± 0.86	73.15 ± 0.89	3	79.09 ± 1.51	80.27 ± 0.41	78.03 ± 1.02	4			
	Google Palm Cortex 001	81.15 + 1.01	82.79 + 0.41	69.51 ± 0.83	1	80.91 + 0.19	80.72 + 0.33	78.93 ± 0.90	3			
	Fine-tuned PLM Embedd	ings										
	Fine-tuned Deberta-base	59.23 ± 1.16	57.38 ± 2.01	30.98 ± 0.68	8	62.12 ± 0.07	61.57 ± 0.07	53.65 ± 0.26	8			
terative	GLEM-GNN	48.49 ± 1.86	51.02 ± 1.22	N/A	11	62.08 ± 0.06	62.63 ± 0.27	N/A	11			
Structure	GLEM-LM	59.23 ± 1.16	57.38 ± 2.01	N/A	9	62.12 ± 0.07	61.57 ± 0.07	N/A	9			

Vanilla fine-tuning approaches may not work well in low labeling rates

Sentence embeddings are also effective in low labeling rate

Table 1: Experimental results for feature-level *LLMs-as-Enhancer* on CORA and PUBMED with a low labeling ratio Since MLPs do not provide structural information, it is meaningless to co-train it with PLM (with their performance shown as N/A). We use yellow to denote the best performance under a specific GNN/MLP model, green the second best one, and pink the third best one.

			CORA				PUBMEI)	
		GCN	GAT	MLP	Rank	GCN	GAT	MLP	Rank
	Non-contextualized Shallo								
	TF-IDF	81.99 ± 0.63	82.30 ± 0.65	67.18 ± 1.01	4	78.86 ± 2.00	77.65 ± 0.91	71.07 ± 0.78	5
	Word2Vec	74.01 ± 1.24	72.32 ± 0.17	55.34 ± 1.31	6	70.10 ± 1.80	69.30 ± 0.66	63.48 ± 0.54	7
-	PLM/LLM Embeddings w	vithout Fine-tu	ning						
	Deberta-base	48.49 ± 1.86	51.02 ± 1.22	30.40 ± 0.57	10	62.08 ± 0.06	62.63 ± 0.27	53.50 ± 0.43	10
Cascading _	LLama 7B	66.80 ± 2.20	59.74 ± 1.53	52.88 ± 1.96	7	73.53 ± 0.06	67.52 ± 0.07	66.07 ± 0.56	6
Structure	Local Sentence Embedding Models								
	Sentence-BERT(MiniLM)	82.20 ± 0.49	82.77 ± 0.59	74.26 ± 1.44	2	81.01 ± 1.32	79.08 ± 0.07	76.66 ± 0.50	2
	e5-large	82.56 ± 0.73	81.62 ± 1.09	74.26 ± 0.93	4	82.63 ± 1.13	79.67 ± 0.80	80.38 ± 1.94	1
-	Online Sentence Embeddi	ng Models							
	text-ada-embedding-002	82.72 ± 0.69	82.51 ± 0.86	73.15 ± 0.89	3	79.09 ± 1.51	80.27 ± 0.41	78.03 ± 1.02	4
	Google Palm Cortex 001	81.15 ± 1.01	82.79 ± 0.41	69.51 ± 0.83	1	80.91 ± 0.19	80.72 ± 0.33	78.93 ± 0.90	3
-	Fine-tuned PLM Embedd	ings							
	Fine-tuned Deberta-base	59.23 ± 1.16	57.38 ± 2.01	30.98 ± 0.68	8	62.12 ± 0.07	61.57 ± 0.07	53.65 ± 0.26	8
Iterative	GLEM-GNN	48.49 ± 1.86	51.02 ± 1.22	N/A	11	62.08 ± 0.06	62.63 ± 0.27	N/A	11
Structure	GLEM-LM	59.23 ± 1.16	57.38 ± 2.01	N/A	9	62.12 ± 0.07	61.57 ± 0.07	N/A	9

Table 1: Experimental results for feature-level *LLMs-as-Enhancer* on CORA and PUBMED with a low labeling ratio. Since MLPs do not provide structural information, it is meaningless to co-train it with PLM (with their performance shown as N/A). We use yellow to denote the best performance under a specific GNN/MLP model, green the second best one, and pink the third best one.

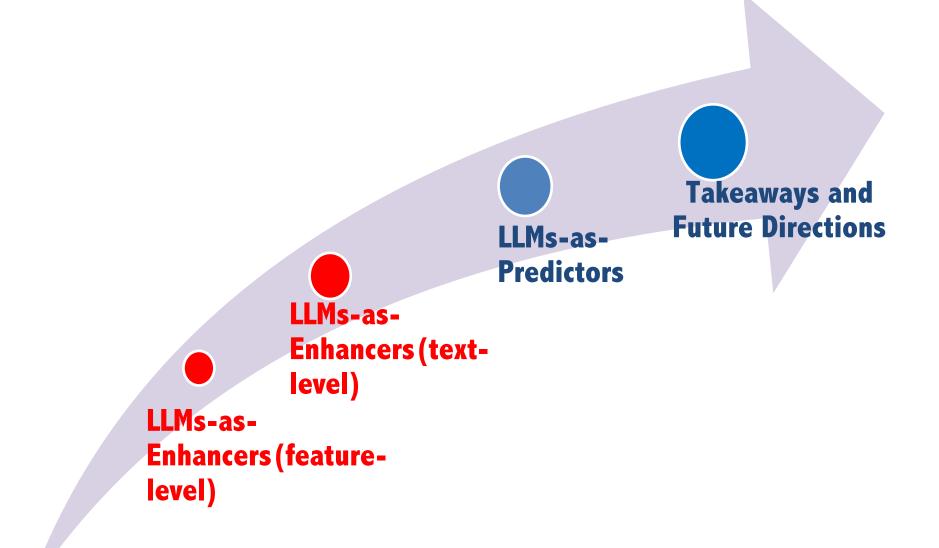
			CORA			PUBMED						
		GCN	GAT	MLP	Rank	GCN	GAT	MLP	Rank			
	Non-contextualized Shallo	w Embeddings										
	TF-IDF	81.99 ± 0.63	82.30 ± 0.65	67.18 ± 1.01	4	78.86 ± 2.00	77.65 ± 0.91	71.07 ± 0.78	5			
	Word2Vec	74.01 ± 1.24	72.32 ± 0.17	55.34 ± 1.31	6	70.10 ± 1.80	69.30 ± 0.66	63.48 ± 0.54	7			
	PLM/LLM Embeddings without Fine-tuning											
	Deberta-base	48.49 ± 1.86	51.02 ± 1.22	30.40 ± 0.57	10	62.08 ± 0.06	62.63 ± 0.27	53.50 ± 0.43	10			
Cascading	LLama 7B	66.80 ± 2.20	59.74 ± 1.53	52.88 ± 1.96	7	73.53 ± 0.06	67.52 ± 0.07	66.07 ± 0.56	6			
Structure	Local Sentence Embedding Models											
	Sentence-BERT(MiniLM)	82.20 ± 0.49	82.77 ± 0.59	74.26 ± 1.44	2	81.01 ± 1.32	79.08 ± 0.07	76.66 ± 0.50	2			
	e5-large	82.56 ± 0.73	81.62 ± 1.09	74.26 ± 0.93	4	82.63 ± 1.13	79.67 ± 0.80	80.38 ± 1.94	1			
	Online Sentence Embeddi	ng Models										
	text-ada-embedding-002	82.72 ± 0.69	82.51 ± 0.86	73.15 ± 0.89	3	79.09 ± 1.51	80.27 ± 0.41	78.03 ± 1.02	4			
	Google Palm Cortex 001	81.15 ± 1.01	82.79 ± 0.41	69.51 ± 0.83	1	80.91 ± 0.19	80.72 ± 0.33	78.93 ± 0.90	3			
	Fine-tuned PLM Embeddi	ngs										
	Fine-tuned Deberta-base	59.23 ± 1.16	57.38 ± 2.01	30.98 ± 0.68	8	62.12 ± 0.07	61.57 ± 0.07	53.65 ± 0.26	8			
Iterative	GLEM-GNN	48.49 ± 1.86	51.02 ± 1.22	N/A	11	62.08 ± 0.06	62.63 ± 0.27	N/A	11			
Structure	GLEM-LM	59.23 ± 1.16	57.38 ± 2.01	N/A	9	62.12 ± 0.07	61.57 ± 0.07	N/A	9			

Increasing model size can help, but types of LMs may matter more

Table 3: Experimental results for feature-level *LLMs-as-Enhancers* on OGBN-ARXIV and OGBN-PRODUCTS dataset. MLPs do not provide structural information so it's meaningless to co-train it with PLM, thus we don't show the performance. We use yellow to denote the best performance under a specific GNN/MLP model, green the second best one, and pink the third best one.

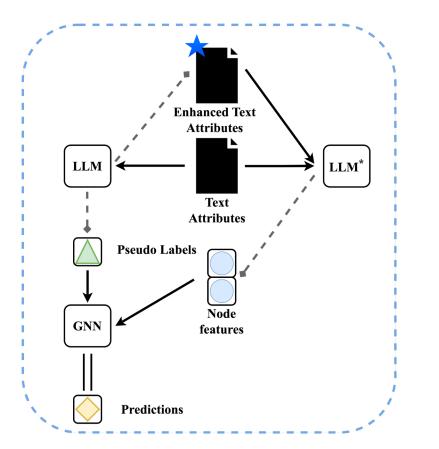
			OGBN-ARXIV OGBN-PRODUCTS								
		GCN	MLP	RevGAT	Rank	SAGE	SAGN	MLP	Rank		
	Non-contextualized Shallow Embeddings										
	TF-IDF	72.23 ± 0.21	66.60 ± 0.25	75.16 ± 0.14	8	79.73 ± 0.48	84.40 ± 0.07	64.42 ± 0.18	7		
	Word2Vec	71.74 ± 0.29	55.50 ± 0.23	73.78 ± 0.19	9	81.33 ± 0.79	84.12 ± 0.18	69.27 ± 0.54	8		
	PLM/LLM Embeddings w	vithout Fine-tu	ning								
	Deberta-base	45 70 + 5 59	$40\overline{33} + 453$	71.20 ± 0.48	10	62 03 + 8 82	74.90 ± 0.48	7.18 ± 1.09	10		
Cascading	Local Sentence Embeddin	g Models									
Structure	Sentence-BERT(MiniLM)	73.10 ± 0.25	71.62 ± 0.10	76.94 ± 0.11	2	82.51 ± 0.53	84.79 ± 0.23	72.73 ± 0.34	6		
Structure	e5-large	73.74 ± 0.12	72.75 ± 0.00	76.59 ± 0.44	4	82.46 ± 0.91	85.47 ± 0.21	77.49 ± 0.29	3		
	Online Sentence Embedding Models										
	text-ada-embedding-002	72.76 ± 0.23	72.17 ± 0.00	76.64 ± 0.20	3	82.90 ± 0.42	85.20 ± 0.19	76.42 ± 0.31	4		
	Fine-tuned PLM Embeddi	ings									
	Fine-tuned Deberta-base	74.65 ± 0.12	72.90 ± 0.11	75.80 ± 0.39	6	82.15 ± 0.16	84.01 ± 0.05	79.08 ± 0.23	9		
	Others										
	GIANT	73.29 ± 0.10	73.06 ± 0.11	75.90 ± 0.19	5	83.16 ± 0.19	86.67 ± 0.09	79.82 ± 0.07	2		
Iterative	GLEM-GNN	75.93 ± 0.19	N/A	76.97 ± 0.19	1	83.16 ± 0.09	87.36 ± 0.07	N/A	1		
Structure	GLEM-LM	75.71 ± 0.24	N/A	75.45 ± 0.12	7	81.25 ± 0.15	84.83 ± 0.04	N/A	5		

OpenAl's embedding models present limited performance gain compared to open-source alternatives



When the embeddings of LLMs are not accessible

Explore them to augment the attributes in the text level.



LLM^{*} : LLM with accessible embeddings LLM: powerful LLM used to augment the attributes

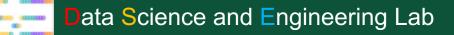
After augmentation, we further encode the augmented attributes into augmented features

LLMs-as-Enhancers(text-level)

LLMs present a "higher" level of intelligence which may help smaller language models better understand texts

Complex Reasoning

Scenarios need expert knowledge



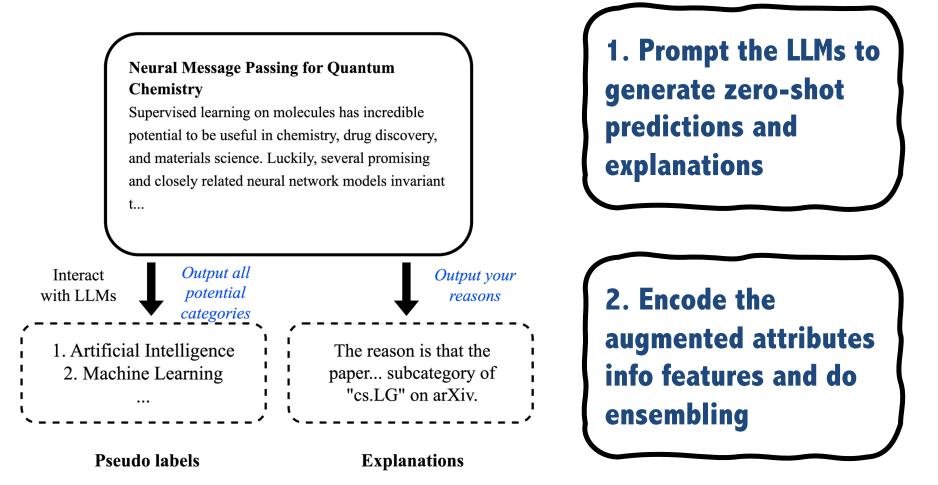
LLMs-as-Enhancers(text-level)

Leveraging the knowledge of LLMs to generate predictions and explanations as augmented attributes.

Leveraging the knowledge of LLMs to extract keywords and generate descriptions as augmented attributes.

TAPE

TAPE



KEA

Neural Message Passing for Quantum Chemistry

Supervised learning on molecules has incredible potential to be useful in chemistry, drug discovery, and materials science. Luckily, several promising and closely related neural network models invariant t...

Interact with LLMs

Extract the technical terms relevant to AI, HCI, DB... (dataset categories)

1. Supervised Learning: A machine learning technique where...

2. Message Passing: A technique used in graph...

Technical terms with descriptions

1. Prompt the LLMs to extract domain-specific keywords and generate descriptions

KEA-I: Insert the augmented texts into brightalthttribytespted and the pressedes them together ugmented features and KEA-S: encode the augmented and original attributes separately

We adopt Cora and Pubmed, and also low/high labeling rate. We adopt e5 as the encoder, with a cascading structure. TA refers to the performance of original features

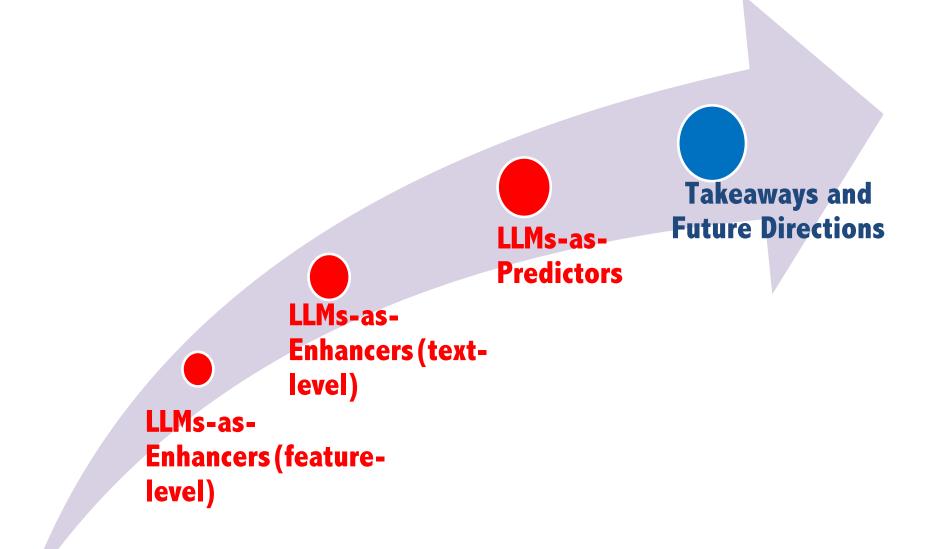
Both methods can achieve performance gain compared to the original attributes

		CORA (low)]	PUBMED (low)	
	GCN	GAT	MLP	GCN	GAT	MLP
ТА	82.56 ± 0.73	81.62 ± 1.09	74.26 ± 0.93	82.63 ± 1.13	79.67 ± 0.80	80.38 ± 1.94
KEA-I + TA	83.20 ± 0.56	83.38 ± 0.63	74.34 ± 0.97	83.30 ± 1.75	81.16 ± 0.87	80.74 ± 2.44
KEA-S + TA	84.63 ± 0.58	85.02 ± 0.40	76.11 ± 2.66	82.93 ± 2.38	81.34 ± 1.51	80.74 ± 2.44
TA+E	$\overline{83.38 \pm 0.42}$	$\overline{84.00 \pm 0.09}$	75.73 ± 0.53	87.44 ± 0.49	86.71 ± 0.92	90.25 ± 1.56
		CORA (high)		F	PUBMED (high)	
	GCN	GAT	MLP	GCN	GAT	MLP
TA	90.53 ± 2.33	89.10 ± 3.22	86.19 ± 4.38	89.65 ± 0.85	89.55 ± 1.16	91.39 ± 0.47
KEA-I + TA	91.12 ± 1.76	90.24 ± 2.93	87.88 ± 4.44	90.19 ± 0.83	90.60 ± 1.22	92.12 ± 0.74
KEA-S + TA	91.09 ± 1.78	92.30 ± 1.69	88.95 ± 4.96	90.40 ± 0.92	90.82 ± 1.30	91.78 ± 0.56
TA+E	90.68 ± 2.12	91.86 ± 1.36	$\overline{87.00 \pm 4.83}$	92.64 ± 1.00	93.35 ± 1.24	94.34 ± 0.86

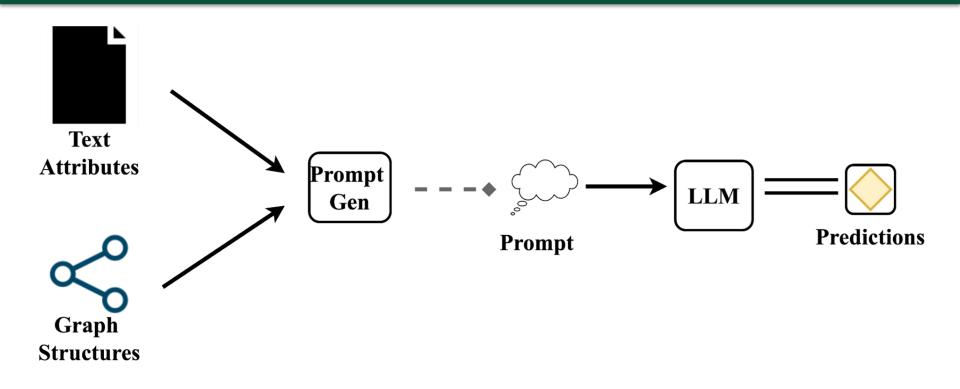
						PUBMED (low)		
. .		CORA (low)				~ /		
<u>Best</u>	GCN	GAT	MLP	- 	GCN	GAT	MLP	
TA	82.56 ± 0.73	81.62 ± 1.09	74.26 ± 0.93	TA	82.63 ± 1.13	79.67 ± 0.80	80.38 ± 1.94	
KEA-I + TA	83.20 ± 0.56	83.38 ± 0.63	74.34 ± 0.97	KEA-I + TA	83.30 ± 1.75	81.16 ± 0.87	80.74 ± 2.44	
$\mathbf{KEA} - \mathbf{S} + \mathbf{TA}$	84.63 ± 0.58	85.02 ± 0.40	76.11 ± 2.66	KEA-S + TA	82.93 ± 2.38	81.34 ± 1.51	80.74 ± 2.44	
TA+E	$\frac{0.000}{83.38 \pm 0.42}$	$\frac{00.02 \pm 0.10}{84.00 \pm 0.09}$	$\frac{76.11}{75.73 \pm 0.53}$	TA+E	87.44 ± 0.49	86.71 ± 0.92	90.25 ± 1.56	
		CORA (high)			PUBMED (high)			
	GCN	GAT	MLP		GCN	GAT	MLP	
TA	90.53 ± 2.33	89.10 ± 3.22	86.19 ± 4.38	TA	89.65 ± 0.85	89.55 ± 1.16	91.39 ± 0.47	
KEA-I + TA	91.12 ± 1.76	90.24 ± 2.93	87.88 ± 4.44	KEA-I + TA	90.19 ± 0.83	90.60 ± 1.22	92.12 ± 0.74	
KEA-S + TA	$\overline{91.09 \pm 1.78}$	92.30 ± 1.69	88.95 ± 4.96	KEA-S + TA	90.40 ± 0.92	90.82 ± 1.30	91.78 ± 0.56	
TA+E	90.68 ± 2.12	$\overline{91.86 \pm 1.36}$	$\overline{87.00 \pm 4.83}$	TA+E	92.64 ± 1.00	93.35 ± 1.24	$\underline{94.34 \pm 0.86}$	

For different datasets, the most effective enhancement methods may vary

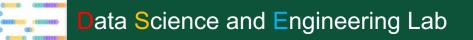
This may be related to LLMs' zero-shot performance on datasets since TAPE generates predictions in the augmented attributes.



LLMs-as-Predictors



It's possible to do zero-shot predictions with this pipeline!



Starting point: text classification

By ignoring graph structures, we can view node classification as text classification

Zero-shot Prompts	Paper: \n <paper content=""> \n Task: \n There are following categories: \n list of categories> \n Which category does this paper belong to? \n Output the most 1 possible category of this paper as a python list, like ['XX']</paper>
Few-shot Prompts	 # Information for the first few-shot samples Paper: as a python list, like ['XX'] \n [<ground 1="" truth="">] \n (more few shot samples)</ground> # Information for the current paper Paper: category of this paper as a python list, like ['XX']

Does CoT help node classification?

CoT is helpful for reasoning-involved tasks, will it help classification?

Zero-shot prompts with CoT	Paper: category of this paper as a python list, like ['XX'] \n Think it step by step and output your reason in one sentence.
Few-shot prompts with CoT	 # first use zero-shot cot to generate the reasoning process and get CoT process for each few-shot samples # Information for the first few-shot samples Paper: \n [<ground 1="" truth="">] \n <cot 1="" process=""> (more few shot samples)</cot></ground> # Information for this paper Paper:Think it step by step and output your reason in one sentence.

Experimental Settings

 Datasets: Cora, Citeseer, Pubmed, OGB-Arxiv, and OGB-Products

We randomly sample 200 nodes from each dataset and repeat the experiment twice.

For LLMs, we adopt either a zero-shot or few-shot setting.

On some datasets, LLMs' zero-shot performance is close to or even surpasses GNNs'

CoT doesn't show promising gain in this task

	CORA	CITESEER	Pubmed	Ogbn-arxiv	OGBN-PRODUCTS
Zero-shot	67.00 ± 1.41	65.50 ± 3.53	90.75 ± 5.30	51.75 ± 3.89	70.75 ± 2.48
Few-shot	67.75 ± 3.53	66.00 ± 5.66	85.50 ± 2.80	50.25 ± 1.06	77.75 ± 1.06
Zero-shot with COT	64.00 ± 0.71	66.50 ± 2.82	86.25 ± 3.29	50.50 ± 1.41	71.25 ± 1.06
Few-shot with COT	64.00 ± 1.41	60.50 ± 4.94	85.50 ± 4.94	47.25 ± 2.47	73.25 ± 1.77
GCN/SAGE	82.20 ± 0.49	71.19 ± 1.10	81.01 ± 1.32	73.10 ± 0.25	82.51 ± 0.53

For Cora and Pubmed, we set the performance of GCN in the low labeling rate (20 nodes per class for training, 500 for validation, and 1000 for test) as the baseline.

For some samples, multiple labels seem reasonable from commonsense knowledge

Paper: The Neural Network House: An overview; Typical home comfort systems utilize only rudimentary forms of energy management and conservation. The most sophisticated technology in common use today is an automatic setback thermostat. Tremendous potential remains for improving the efficiency of electric and gas usage... **Ground Truth:** Reinforcement Learning

LLM's Prediction: Neural Networks

For these datasets, there's semantic overlap between different labels (many papers are interdisciplinary)

Is the widely adopted single-label setting reasonable here?

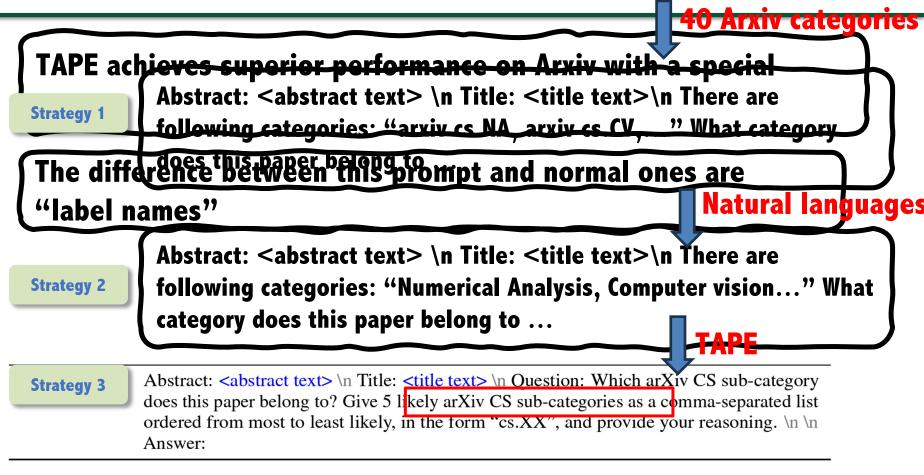


Table 14: Performance of LLMs on OGB-Arxiv dataset, with three different label designs.

What's reason of this phenomenon&Rcgbablytdifferent prompts have different effects on the memorization of LUMs

Incorporating neighboring information

How to include neighborhood information in the prompt?

Prompts used to summarize the neighboring information

The following list records some papers related to the current one.

Lists of samples neighboring nodes

The "category" column is optional, and we find it presents little influence on the generated summary [{ "content": "Cadabra a field theory motivated ...", "category": "computer vision"... }, ...]

Instruction

Please summarize the information above with a short paragraph, find some common points which can reflect the category of this paper

One potential solution: <u>Summarization</u>

Trying to simulate the aggregation operation of GNNs

	CORA	CITESEER	Pubmed	Ogbn-arxiv	OGBN-PRODUCTS
Zero-shot	67.00 ± 1.41	65.50 ± 3.53	90.75 ± 5.30	51.75 ± 3.89	70.75 ± 2.48
Few-shot	67.75 ± 3.53	66.00 ± 5.66	85.50 ± 2.80	50.25 ± 1.06	77.75 ± 1.06
Zero-Shot with 2-hop info	71.75 ± 0.35	62.00 ± 1.41	88.00 ± 1.41	55.00 ± 2.83	75.25 ± 3.53
Few-Shot with 2-hop info	74.00 ± 4.24	67.00 ± 4.94	79.25 ± 6.71	52.25 ± 3.18	76.00 ± 2.82
GCN/SAGE	82.20 ± 0.49	71.19 ± 1.10	81.01 ± 1.32	73.10 ± 0.25	82.51 ± 0.53

By incorporating neighborhood information, we can get performance gain on most datasets

Why is Pubmed an exception?

Why is Pubmed special?

Table 24: An illustrative example for PUBMED

Title: Predictive power of sequential measures of albuminuria for progression to ESRD or death in Pima Indians with **type 2 diabetes**.

... (content omitted here)

Ground truth label: Diabetes Mellitus Type 2

For Pubmed, it's common that ground truth directly appears in the text attributes

LLMs with a structure-aware prompt may also suffer from heterophilous neighboring nodes.

 Table 18: GNNs and LLMs with structure-aware prompts are both wrong

Paper: Title: C-reactive protein and incident cardiovascular events among men with diabetes. Abstract: OBJECTIVE: Several large prospective studies have shown that baseline levels of C-reactive protein (CRP) are an independent predictor of cardiovascular events among apparently healthy individuals. However, prospective data on whether CRP predicts cardiovascular events in diabetic patients are limited so far. RESEARCH DESIGN AND METHODS ... Neighbor Summary: This paper focuses on different aspects of **type 2 diabetes** mellitus. It explores the levels of various markers such as tumor necrosis factor-alpha, interleukin-2 ...

Ground truth: "Diabetes Mellitus Type 1" Structure-ignorant prompts: "Diabetes Mellitus Type 1" Structure-aware prompt: "Diabetes Mellitus Type 2" GNN: "Diabetes Mellitus Type 2"

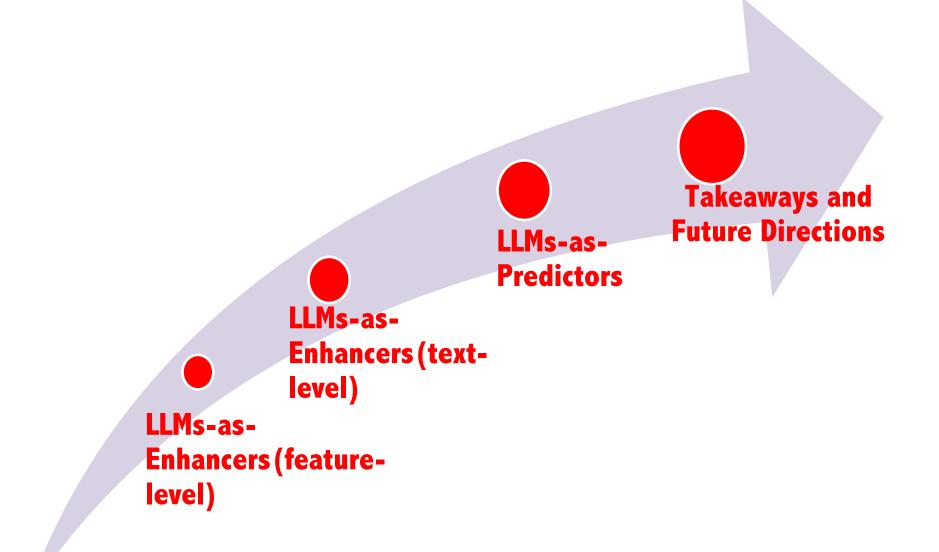
LLMs' effectiveness on zero-shot learning inspire their potential as annotators!

	CORA	PUBMED
Using pseudo labels	5	
20 shots \times #class	64.95 ± 0.98	71.70 ± 1.06
Using ground truth		
3 shots per class	52.63 ± 1.46	59.35 ± 2.67
5 shots per class	58.97 ± 1.41	65.98 ± 0.74
10 shots per class	69.87 ± 2.27	71.51 ± 0.77

Setting: initially all unlabeled nodes, randomly select some nodes to be annotated. 75% for train, 25% for validation.

This presents two novel challenges

- 1. How to select informative nodes based on the graph's information
- 2. How to select confident nodes of LLMs to generate high-quality annotations?



1. For LLMs-as-Enhancers, using deep sentence embedding models to generate embeddings for node attributes presents both effectiveness and efficiency.

2. For LLMs-as-Enhancers, utilizing LLMs to augment node attributes at the text level leads to improvements in downstream performance.

3. For LLMs-as-Predictors, LLMs present preliminary effectiveness but we should be careful about their inaccurate predictions and the potential test data leakage problem.

4. LLMs demonstrate the potential to serve as good annotators for labeling nodes given its zero-shot performance.

Future directions

1. Extending the current pipelines to more tasks, such as link prediction and graph classification

How to represent structural features like common neighborhood and Katz index

Graph classification

Link prediction

How to incorporate whole graph information within limited input context length

2.How to improve the efficiency of LLM-involved pipelines, and scale it to larger graphs?

Inference speed

Inference costs

In this paper, we only test on a few sampled nodes because of LLMs' high usage cost

Future directions

3. How to evaluate the performance of LLMs in a more reasonable approach?

Data Contamination

Single label setting For dat

Most datasets may already be included in the pre-training text corpora of LLMs

For datasets like papers, single label setting seems not reasonable to evaluate LLMs

4. Design novel strategies to use LLMs as a more effective annotators

Informative nodes

We should select those nodes which pose larger influence on the graph

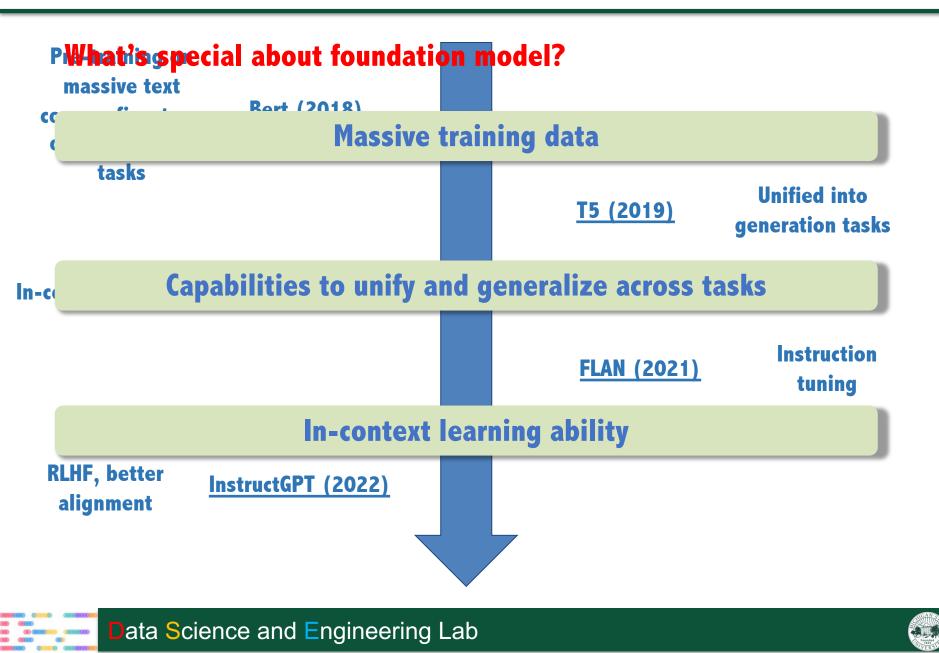
Confident nodes

We should select "confident" nodes of LLMs to generate high-quality annotations

5. Large models for the graph domain

In this paper, we mainly consider taking the capability of LLMs to solve graph learning problems

Development of foundation models in NLP



How to define the transferrable unit in the graph and resolve different structural semantics?

How to unify different tasks and make them help with each other?

Massive graph datasets for pre-training, like MAG240M for the paper domain

We don't even have a pre-trained model like BERT yet, which can achieve good performance on various downstream tasks through a unified pre-training task. We may take a different development path from NLP.

Acknowledgements

Thanks for this great opportunity and our funding support from NSF, DARPA, ARO, AERA, and industrial collaborators.

