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ABSTRACT
Transformers have been extensively applied to model users’ dy-
namic and evolving historical behaviors for the sequential rec-
ommendation. Despite their success, the current Transformer ar-
chitecture applied to sequential recommendation faces two ma-
jor challenges: 1) the high computational complexity and over-
parameterization result in substantial computational cost and mem-
ory requirement. 2) The self-attention mechanism tends to overly
rely on high-attributed attention positions, leading to a higher
risk of overfitting. The long-tail distribution of item popularity
further intensifies this issue. To address these issues, we present
FLASH4Rec, an efficient transformer architecture that utilizes gated
attention layer and Sparsely-Gated Mixture of Experts (MoE) layer
to replace themulti-head self-attention layer and over-parameterized
dense feed-forward network, respectively. Additionally, we pro-
pose Top-K Dropout to regularize the attention weights and en-
courage reliance on low-attention positions, reducing the risk of
overfitting. Extensive experimental studies are conducted on real-
world datasets, and further prove the effectiveness and efficiency
of FLASH4Rec.
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1 INTRODUCTION
A sequential recommender system is a type of recommender system
that utilizes historical user-item interactions to make subsequent

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

user-item recommendations by modeling the sequential dependen-
cies between them. As one of the essential methods for large-scale
neural retrieval systems, various methods have been designed for
sequential recommenders, including SASRec [5] and BERT4rec [11],
both are based on self-attention mechanism and the Transformer
architecture.

We introduce a new architecture called FLASH4Rec, which ef-
ficiently models item dependencies in users’ historical behavior
sequences using a Gated Attention Layer and a Sparsely-Gated
Mixture-of-Experts Layer. The Gated Attention Layer computes
user-aware item sequence representations, while the SparseMoE
Layer increases the model’s capacity without increasing computa-
tional costs. To prevent overfitting, we include a Top-K Dropout
mechanism that encourages the model to learn from long-tail at-
tention positions.

2 PROPOSED METHOD
In sequential recommendation setup, given the user 𝑢’s historical
interaction sequence S𝑢=[𝑖𝑢1 , . . . , 𝑖

𝑢
𝑡 ], we aim to predict the item

that user𝑢 will interact with at time step 𝑡 +1: 𝑖𝑢
𝑡+1. In this work, we

propose FLASH4Rec, which leverages the gated attention layer and
Sparsely-Gated Mixture of Experts (MoE) layer to model the items’
dependencies. The overall architecture of FLASH4Rec is shown in
Figure 1.

2.1 Embedding Layer
Our recommender maintains an item embedding table T𝐼 ∈ R | I |×𝑑 ,
where 𝑑 is the size of the embedding. For each user’s historical
interaction sequence [𝑖𝑢1 , 𝑖

𝑢
2 , . . . , 𝑖

𝑢
𝑡 ], where 𝑡 is the maximum time

length. The embedding for item sequence [𝑖𝑢1 , 𝑖
𝑢
2 , . . . , 𝑖

𝑢
𝑡 ] is denoted

as E𝑖 ∈ R𝑡×𝑑 , where 𝑑 is the size of the embedding.
Similarly, we also maintain a user embedding table T𝑈 ∈ R |U |×𝑑 .

Given a user id, we can retrieve the user embedding vector e𝑢 ∈ 𝑅𝑑 .

2.2 Gated Attention Layer
Inspired by [4], we utilize the gated attention layer to generate
user-aware representations. The attentive gating mechanism can
achieve higher parameter and computing efficiency without reduc-
ing performance. The overall architecture of FLASH4Rec is shown
in Figure 2.

Firstly, we project the item sequence embedding 𝑋𝐼 ∈ R𝑇×𝑑 to
a shared representation 𝑍 with time length 𝑇 and embedding di-
mension 𝑘 . Q and K are transformations that apply per-dimension
scales and offsets to 𝑍 . Then, we apply the scaled dot-product at-
tention to compute the attention weights 𝐴 ∈ R𝑇×𝑇 :
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Figure 1: The Architecture of FLASH4Rec

In this example, we only include a single transformer layer consist-
ing of GAU, MoE, and Normalization layer. While in practice, it is
usually beneficial to stack multiple transformer layers for learning
more complicated item relevance patterns.
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Figure 2: The Architecture of Gated Attention Layer

𝑍 = 𝜎 (𝑋𝐼𝑊𝑧) ∈ R𝑇×𝑘 (1)

𝐴 = softmax( Q(𝑍 )K(𝑍 )⊤√︁
𝑑𝑘

) ∈ R𝑇×𝑇 (2)

where𝑊𝑧 denotes the kernel weights of the projection layer for
both query and key, and 1√

𝑑𝑘
is the scaling factor.

In order to model the sequential relations of the user’s inter-
acted items and adapt to varying lengths of sequences, we ap-
ply the rotary position embedding [10] to capture the sequential

information. Suppose 𝑅𝑑Θ,𝑚 is the rotary matrix with parameters
Θ = {\𝑖 = 10000−2(𝑖−1)/𝑑 , 𝑖 ∈ [1, 2, · · · , 𝑑/2]}, Applying the rotary
position embedding to the self-attention in Equation (2), we obtain
the attention weights with the rotary position embeddings:

𝐴
rotary
𝑚,𝑛 = softmax

( (Q(𝑍 )𝑚𝑅𝑑Θ,𝑚

) (
K(𝑍 )𝑛𝑅𝑑Θ,𝑛

)⊤√︁
𝑑𝑘

)
= softmax

( (Q(𝑍 )𝑚𝑅𝑑Θ,𝑚−𝑛K(𝑍 )⊤𝑛
)√︁

𝑑𝑘

)
∈ R𝑇×𝑇

(3)
where 𝐴

rotary
𝑚,𝑛 is the 𝑚,𝑛-th element of 𝐴rotary, Q(𝑍 )𝑚 is the

𝑚-th row of Q(𝑍 ) and K(𝑍 )𝑛 is the 𝑛-th row of K(𝑍 ).
Secondly, we also project the item sequence embedding 𝑋𝐼 to 𝑉 .

To enhance the representation capacity, we concatenate the item
sequence embedding 𝑋𝐼 ∈ R𝑇×𝑑 and user embedding 𝑋𝑈 ∈ R𝑑
along the time sequence dimension and further compute the gating
weights 𝑈 . In this way, gating weights𝑈 vary over different user
embedding 𝑋𝑈 and thus become user-aware. The mathematical
representation of the gating weights𝑈 is given by:

𝑉 = 𝜎 (𝑋𝐼𝑊𝑣) ∈ R𝑇×𝑘 (4)

𝑈 = 𝜎 (Concat(𝑋𝐼 , 𝑋𝑈 )𝑊𝑢 ) ∈ R𝑇×𝑘 (5)

where𝑊𝑣 denotes the kernel weights of the projection layer for
value. The concatenation operation with broadcasting concatenates
item sequence embedding and user embedding to representation
with dimension 𝑇 × 2𝑑 . The𝑊𝑢 denotes the kernel weights of the
projection layer for gating weight.

Finally, we multiply gating weights 𝑈 with the self-attention
output element-wise to compute the user-aware item sequence
embedding:

𝑂 = 𝑈 ⊗ 𝐴𝑉 (6)
The Gated Attention Layer has single-head structure but exhibits

competitive performance comparing with multi-head self-attention,
while being more efficient via shared representation and efficient
per-dimension scaling and offsetting. It fuses user embedding in-
formation into gating weights to create user-aware item sequence
representations, improving the accuracy and relevance of recom-
mendations.

2.3 Sparse Mixture-of-Experts Layer
Feed-Forward Network is another essential component to Trans-
former [2], other than multi-head self-attention. To increase the
model’s capacity, we drew inspiration from Switch Transformers [3]
and incorporated a sparsely-activatedmixture-of-experts layer. This
layer includes several key elements: a noisy gating network, a sparse
dispatcher, and load balancing regularization. Figure 3 displays the
overall architecture of the SparseMoE layer.

2.3.1 Noisy Gating Network. The gating network essentially com-
putes the gating value for selecting experts for each item represen-
tation.

For the input item embedding of gating network 𝑋𝐼 , it is firstly
processed by the gating network: a two-layer feed-forward network



FLASH4Rec: A Lightweight and Sparsely Activated Transformer for User-Aware Sequential Recommendation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

FFN 1 FFN 2 FFN 3 FFN n-1 FFN n

Gating 
Network

Sparse 
Dispatcher

....

Non-Zero Index

Figure 3: The Architecture of Sparse Mixture-of-Experts
Layer Layer

In this example, the gating network selects the expert for each item
embedding. The sparse dispatcher further dispatch each item embed-
ding to corresponding FFN to independently compute the outputs.

with non-linear activation function computing the gating logits
ℎ ∈ 𝑅𝑁 which are normalized via a softmax function over the avail-
able N experts. Additionally, we applied multiplicative jitter noise
to introduce exploration and promoting load balancing between
different experts.

ℎ = FFN(𝑋𝐼 ◦ RandomUniform(1.0 − eps, 1.0 + eps)) (7)

For the computed routing score ℎ, we only keep the top k values
and set the rest to −∞, resulting in the corresponding softmax
gating values equal 0. The 𝑖-th element of the output vector of the
gating network is

𝑔𝑖 =

exp
(
TopK(ℎ, 𝑘)𝑖

)
∑𝑁
𝑖=1 exp

(
TopK(ℎ, 𝑘)𝑖

) , (8)

where

TopK(ℎ, 𝑘)𝑖 =
{
ℎ𝑖 if ℎ𝑖 is in the top 𝑘 elements of ℎ
−∞ otherwise.

(9)

The sparse dispatcher will use these gating values for routing
item embedding to different experts. This is the essential step for
achieving the sparsity of our Sparse Mixture-of-Experts layer. Note
that the 𝑔 is differentiable regardless of the value of 𝑘[3]. For sim-
plicity and computational efficiency, we keep 𝑘 as 1 throughout
this paper.

2.3.2 Sparse Dispatcher. The sparse dispatcher [3, 9, 14] takes the
input gating values and experts as input. It dispatches item represen-
tations to the experts corresponding to the non-zero gating value
and lets experts generate the refined item embeddings. The output
𝑦 of the Sparse Mixture-of-Experts layer is the linearly weighted
combination of expert output embeddings by the non-zero gating
values.

𝑦 =
∑︁
𝑖∈𝜙

𝑔𝑖𝐹𝐹𝑁𝑖 (𝑋𝐼 ) (10)

Where 𝜙 denotes the selected non-zero indices. Wherever 𝑔𝑖 =
0, we don’t pass the input to the corresponding expert and thus
achieving computing efficiency via sparse activation.

2.3.3 Load Balancing Regularization. As stated in the previous
research [3, 9, 14], the gating network tends to select only a few
experts if no regularization is applied. This phenomenon is self-
reinforcing since the selected experts are trained more and will be
selected more frequently by the gating network. Therefore, the load
balancing loss is applied to enforce the uniform expert routing.

𝐿balance = _ · 𝑁 ·
𝑁∑︁
𝑗=1

𝑓𝑗 · 𝑃 𝑗 (11)

where 𝑁 is the number of experts, 𝑓𝑗 is the fraction of item
embeddings dispatched to expert j, 𝑃 𝑗 is the average of the router
probability allocated for expert j, and _ is the coefficient for the
regularization term. In practice, the _ should be sufficiently large to
prevent expert selection self-reinforcing phenomenon at the initial
training stage while not overwhelming the primary objective.

2.4 Top-K Dropout
Over-parameterization of Transformers for recommendation tasks
can lead to overfitting with limited training data. Additionally, the
long-tail distribution of item popularity can cause an imbalance in
self-attention weights, resulting in over-weighting for short-tail
item embeddings and under-weighting for long-tail item embed-
dings.

We use Top-K Dropout to mitigate this overfitting issue. This
regularization approach randomly drops some high-attention posi-
tions from self-attention weights, encouraging the model to learn
from low-attention positions. It identifies Top-K positions in each
row of self-attention weight matrix and masks a portion of them
with probability 𝑝 .

Formally given a self-attention weight matrix 𝐴 ∈ R𝑇×𝑇 , we
firstly compute its Top-K position indicator 𝑆𝐴 , in which each ele-
ment 𝑆𝑖, 𝑗 is defined as:

𝑆𝑖, 𝑗 =

{
1 if 𝐴𝑖, 𝑗 is in the top 𝑘 elements of 𝐴𝑖,·
0 otherwise.

(12)

Next, we want to randomly dropout self-attention weights within
the Top-K positions to produce the Top-K mask matrix 𝑀𝐴 with
dropout rate 𝑝:

𝑀𝑖, 𝑗 =

{
0 if 𝑠𝑖, 𝑗 ∗ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝) = 1
1 otherwise,

(13)

Similar to the inverted dropout, the Top-K dropout re-scales the
self-attention weights to ensure consistency between training and
serving. After the dropout is applied, we re-scale the self-attention
weights by scaling factor 𝑓 :

𝑓 =
1

1.0 − (∑𝑇
𝑖=1

∑𝑇
𝑗=1𝐴𝑖, 𝑗 ∗𝑀𝑖, 𝑗/

∑𝑇
𝑖=1

∑𝑇
𝑗=1𝐴𝑖, 𝑗 )

(14)
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Note that we block the gradient when applying the scaling factor
to avoid the co-adaptation issue. In the training phase, we forward
propagate 𝐴 · 𝑀 · BlockGradient(𝑓 ) to mask the high-attention
position for regularization while re-scaling to ensure the training
and serving consistency. In the serving phase, we forward propagate
original self-attention weights 𝐴.

2.5 Prediction Layer and Loss Function
After stacked 𝐿 enhanced Transformer blocks and given the item
interaction sequence with length 𝑡 , we apply a two-layer feed-
forward network predict on the last layer’s output of the 𝑡-th item
and obtain the 𝐹𝐿𝑡 to predict the next item 𝑖𝑡+1. In this work, we use
inner product to measure the relevance of item 𝑖 as:

𝑟 (𝑖𝑢𝑡+1 | [𝑖
𝑢
1 , 𝑖

𝑢
2 , . . . , 𝑖

𝑢
𝑡 ]) = ⟨F𝐿𝑡 , e𝑖 ⟩ (15)

where e𝑖 ∈ R𝑑 is the embedding of item 𝑖 . Finally, we utilize the
softmax cross-entropy loss to train our model:

𝐿𝑜𝑠𝑠 =
𝑒𝑥𝑝 (⟨F𝐿𝑡 , e𝑔⟩)∑𝐼

𝑖=1⟨F𝐿𝑡 , e𝑖 ⟩
(16)

where item 𝑔 is the ground truth item, |𝐼 | is the number of items.
In practice, when the item corpus is large, one can use sampled
softmax to further improve the training efficiency.

3 EXPERIMENT
3.1 Experiment Settings
3.1.1 Datasets and Evaluation Metrics. We conducted an experi-
ment using three real-world datasets: ML-1M, ML-20M, and Yelp.
We used a Leave-One-Out evaluation strategy to split each dataset
into train, validation, and test partitions. To create the validation
set, we selected the second last item interaction of randomly se-
lected 1024 users from each dataset. For the test set, we hold the
final interaction for each user; the remaining user-item interactions
are used for training. We evaluated our model mainly based on two
ranking-based metrics: Recall@10 and NDCG@10.

3.1.2 Baseline Models. We consider following baseline models
to compare with FLASH4Rec: MF-BPR, GRU4Rec, SASRec and
BERT4Rec.

3.2 Model Performance Comparison
3.2.1 Evaluation on Effectiveness. Themodels’ ranking performance
on each dataset is listed in Table 1. We can observe that our model
FLASH4Rec outperforms existing methods across different datasets.
The superior performance mainly benefits from the key compo-
nents of our architecture, including Gated Attention Layer, Sparsely
Activated Mixture-of-Experts Layer, and Top-K Dropout. We will
conduct a more detailed analysis in later section.

Table 1: Performance Comparison of Different Algorithms
on ML-1M, ML-20M and Yelp Dataset.

ML-1M ML-20M Yelp
Model Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10
MF-BPR 0.0740 0.0377 0.0807 0.0407 0.0191 0.0092
GRU4Rec 0.2132 0.1093 0.1544 0.0839 0.0113 0.0048
SASRec 0.1993 0.1078 0.1439 0.0724 0.0146 0.0076

BERT4Rec 0.2584 0.1392 0.2393 0.1310 0.0149 0.0079
FLASH4Rec 0.2841 0.1568 0.2554 0.1487 0.151 0.0081

3.2.2 Evaluation on Efficiency. The efficiency is compared between
BERT4Rec and FLASHRec, mainly since their architectures are very
similar and BERT4Rec is the most performant model among all the
baseline models. The memory cost is measured with the number of
parameters. The computation cost is measured with floating point
operations per second (FLOPs). In this section, we use ML-1M as
our benchmark dataset since the only major difference between the
same architecture trained on different datasets is the embedding
table. Our main goal is to compare different transformer modules.
The models’ efficiency performance is listed in Table 2.

We can observe that even with almost same amount of param-
eters, the FLASH4Rec achieves better accuracy with less compu-
tational cost. The significant acceleration mainly comes from the
efficient design of the Gated Attention Layer. The SparseMoE layer
contains more parameters but does not increase the computational
cost because of its conditional computation capacity.

Table 2: EfficiencyComparison of BERT4Rec and FLASH4Rec
on ML-1M Dataset.

Params FLOPs
BERT4Rec 3.08M 74.12M
FLASH4Rec 3.16M 63.10M

3.3 Ablation Study
We conduct an ablation study to analyze the key designs in FLASH4Rec,
as shown in Table 3. In the ablation study, we replace multi-head
self-attention layer, FFN and dropout layer by Gated Attention
Layer, SparseMoE Layer, and Top-K Dropout, respectively. We can
observe that both Gated Attention Layer and SparseMoE Layer
improve the modeling capacity for our enhanced transformer block.
The Top-K Dropout better regularizes the self-attentive network
than the vanilla dropout layer.

Table 3: Abalation Study about key componenets of
FLASH4Rec on ML-1M Dataset.

Recall@10 NDCG@10
FLASH4Rec 0.2841 0.1568
w/o Gated Attention 0.2690 0.1488
w/o SparseMoE Layer 0.2787 0.1535
w/o Top-K Dropout 0.2765 0.1512
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4 CONCLUSION
In this paper, we proposed a Transformer variant FLASH4Rec for
the sequential recommendation. Compared with original architec-
tures, FLASH4Rec utilizes Gated Attention Layer and Sparsely-
Gated Mixture-of-Experts Layer to learn user-aware item sequence
representation more effectively and efficiently. We also design the
Top-K Dropout to encourage the model learning from low-attention
positions to reduce overfitting. In future work, we would like to de-
velop a linear attention version of FLASH4Rec further and consider
the time interval between behaviors to efficiently test the model’s
performance on real-world recommendation problems with very
long sequences.
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