
Real-time Event Joining in Practice With Kafka and Flink
Srijan Saket∗

srijanskt@gmail.com
ShareChat
Seattle, USA

Vivek Chandela∗
vivekchandela@sharechat.co

ShareChat
Bangalore, India

Md. Danish Kalim
danish@sharechat.co

ShareChat
Bangalore, India

ABSTRACT
Historically, machine learning training pipelines have predomi-
nantly relied on batch training models, retraining models every few
hours. However, industrial practitioners have proved that real-time
training can lead to a more adaptive and personalized user experi-
ence. The transition from batch to real-time is full of tradeoffs to
get the benefits of accuracy and freshness while keeping the costs
low and having a predictable, maintainable system.

Our work characterizes migrating to a streaming pipeline for a
machine learning model using Apache Kafka and Flink. We demon-
strate how to transition from Google Pub/Sub to Kafka to handle
incoming real-time events and leverage Flink for streaming joins
using RocksDB and checkpointing. We also address challenges such
as managing causal dependencies between events, balancing event
time versus processing time, and ensuring exactly-once versus at-
least-once delivery guarantees, among other issues. Furthermore,
we showcase how we improved scalability by using topic partition-
ing in Kafka, reduced event throughput by 85% through the use of
Avro schema and compression, decreased costs by 40%, and imple-
mented a separate pipeline to ensure data correctness. Our findings
provide valuable insights into the tradeoffs and complexities of
real-time systems, enabling better-informed decisions tailored to
specific requirements for building effective streaming systems that
enhance user satisfaction.

CCS CONCEPTS
• Computer systems organization→ Data flow architectures.

KEYWORDS
event streaming; system design; cost optimisation; short video

ACM Reference Format:
Srijan Saket∗, Vivek Chandela∗, and Md. Danish Kalim. 2024. Real-time
Event Joining in Practice With Kafka and Flink. In Proceedings of the 4th
International Workshop on Online and Adaptive Recommender Systems (OARS
2024), Held in conjunction with CIKM-2024, October 25, 2024, Boise, ID, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3627673.3679083

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
OARS 2024, October 25, 2024, Boise, ID, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0436-9/24/10. . . $15.00
https://doi.org/10.1145/3627673.3679083

1 INTRODUCTION
In the modern information technology era, users generate large
quantities of data. Platforms collect and process this amassed data
to derive meaningful insights that can enhance their system. Social
media platforms, in particular, generate enormous volumes of data
from various user activities [18, 20, 24]. Short-form video (SFV)
platforms are especially prominent, offering an immersive viewing
experience that attracts substantial user attention. Due to the nature
of their offerings, SFV platforms cater to the passive preferences
of users, which are inherently dynamic and frequently changing.
The quality of users’ lean-back experience (i.e., users passively con-
sume information) relies heavily on the system’s ability to capture
user feedback and adapt recommendations in real-time using user
feedback.

Stream processing is a well-known and extensively studied
field. Work in this domain has focused on

(1) Utilising real-time processing framework like Flink to pre-
pare data from machine learning systems [14, 16, 22, 23, 27].

(2) Employing real-time framework for real-time model updates
such as Monolith [21], Solma [10] and others [1, 7, 13].

This paper aims to use a state-of-the-art stream processing frame-
work to implement practical and industry-scale real-time data sys-
tems that will enable real-time model building. We will discuss
the challenges in building these systems and strategies to over-
come them. Key challenges in building industry-scale real-time
data systems include:

(1) Stream Integration: When we deal with data streams con-
taining features and labels, using a connector to merge them
into machine learning systems is essential [4, 6]. Sometimes,
combining labels from different streams into a single stream
for multi-task modeling setups is necessary [8, 19].

(2) Out-of-order Events: Managing delays in data streams gener-
ated by events is vital in system configurations. The system
should be able to process events regardless of their timing to
ensure the accuracy of training data. For instance, creating
training data where a user has viewed and liked an item but
has not shared it would require assigning a value of 1 to the
like label and 0 to the share label.

(3) Load Handling: User engagement with content on the plat-
form over time drives the model’s load. User behaviors can
change, leading to fluctuations like increased usage in the
evening compared to during the day, which highlights the
importance of efficiently managing back pressure [9].

(4) Concurrent Updates: With the increased volume of data,
updates can occur concurrently for a critical element, such

*Equal Contribution

https://doi.org/10.1145/3627673.3679083
https://doi.org/10.1145/3627673.3679083

OARS 2024, October 25, 2024, Boise, ID, USA Saket, Chandela et al.

as users or items. The system must address conflicts aris-
ing from these simultaneous updates to maintain training
stability.

Considering all the above challenges, we built two systems. Both
approaches differ in the choice of components, complexity, and
maintenance:

(1) Approach 1: In the setup described in Fig 1a, PubSub [3] is
used as the messaging queue. Order of events is preserved
(in a time window) by using Memcache [5], also used for
real-time label joining and preparing training samples for
downstream training jobs. Further, Redis is used for dis-
tributed locking to avoid concurrent updates on the same
ID.

(2) Approach 2: The setup in Figure 1b uses Kafka [15] as the
messaging queue, with its benefits discussed in subsequent
sections. By integrating Apache Flink with Kafka, we main-
tain event order and prevent concurrent updates. Although
this approach involves fewer components than the initial
setup, we will demonstrate why it is superior through com-
parison.

2 METHODOLOGY
2.1 Data Context & User Signals
The study was conducted on ShareChat’s data, which is a multi-
lingual social media platform that delivers content in over 18 lan-
guages, with a user base exceeding 180 million monthly active users.
The application generates two broad categories of events: views
and engagements. The system generates view events whenever
it shows content to a user. These are high-volume events with a
peak throughput of >100 MB/sec. Conversely, engagements are user
signals comprised of implicit signals (such as video play and skip)
and explicit signals (including click, like, and share). However, the
event processing pipeline does not distinguish between them. The
volume of these events is significantly lower compared to views. We
used Field-aware Factorization Machines (FFM) [11, 12] to learn 32-
dimensional embedding for each signal. Real-time training retrieves
the previous state of these embeddings from a NoSQL database and
updates them using real-time user signals from messaging queues.

2.2 Generating Training Samples
The system generates real-time training samples by joining a view
event with its corresponding engagement label, if available [25, 29].
In this use case, it considers a view with an engagement event as a
positive label and a view without engagement as a negative label.
For example, if there is a like event corresponding to a view but no
share, comment, or favorite, the label for the like will be 1 and 0
for the others. These events are received through different PubSub
topics, as we have separate models to predict embeddings for each
user signal, as illustrated in Figure 1a.

2.3 Key Challenges
2.3.1 Handling out-of-order events. The sequence of events is cru-
cial for making meaningful updates; otherwise, we risk incorporat-
ing incorrect information in the future. Since the system processes
views and engagements in separate queues, we cannot determine

whether a view precedes engagements or vice versa [2a]. One ap-
proach is to delay view events by a few minutes by holding them in
Pub/Sub without acknowledging receipt while temporarily storing
engagements in a distributed key-value store like Memcache, with
a TTL longer than the delay. However, delaying view events in
Pub/Sub by withholding acknowledgment is inefficient.

2.3.2 Pod Contention. If two pods update the same user embedding
concurrently with different training samples, it can lead to incorrect
outcomes due to the lack of order preservation. To prevent this,
we need to lock the user ID during updates as described in [2b].
Acquiring a distributed lock on the user ID via Redis prevents
concurrent updates, thereby resolving the issue. However, this adds
an extra component to the system, increasing costs.

2.3.3 Inflating Queue Size. Pub/Sub lacks extensive support for
data retention, message replay, and message ordering compared to
log-based queues. Once a message is acked in Pub/Sub, it is gone
forever. So, the only way to delay view events is by unacking them,
which inflates the queue size [2c] and our cloud bills.

2.4 Making “Better” System Choices
Having established the problem statement in the previous sections,
let us explore how we can make choices to create a more reliable
system with the same outcomes while keeping costs under control.

2.4.1 Replace PubSub with Kafka. A good starting point is replac-
ing Google PubSub with Apache Kafka. Kafka is a log-based event-
streaming platform that provides message ordering, the ability to
replay messages, and longer data retention. Apache Flink has ex-
cellent support for Kafka. Also, self-hosted Kafka proved cheaper
than GCP’s managed PubSub offering.

2.4.2 Use Flink. We then rely on Apache Flink [14], an open-source
stream processing framework, as the real-time event joiner. Its rich
feature set includes internal state management, keyed streams,
timers, and many more. Leveraging Flink’s support for the state
backend, particularly RocksDB, allowed us to eliminate the need
for Memcache. Some beneficial properties of Flink in the proposed
solution are:

(1) Graceful Backpressure Handling: Backpressure refers to a
system receiving data faster than it can process, often during
a temporary load spike. Flink handles backpressure grace-
fully without any sophisticated mechanism.

(2) State: Flink enables operators to retain information across
multiple events using state. Flink provides various state prim-
itives like ValueState for single values, MapState for key-
value pairs, and many more. A TTL can be assigned to any
state as needed.

(3) Low-level APIs: Flink supports both high-level and low-level
APIs. We chose low-level APIs like KeyedProcessFunction
and KeyedCoProcessFunction for joining view and engage-
ment events, as they give more control over each event.

(4) Checkpointing: The central part of Flink’s fault tolerance
mechanism is drawing consistent snapshots of all the states
in timers and stateful operators. The system can fall back to
the latest snapshot in case of failure.

https://redis.io/docs/latest/
https://en.wikipedia.org/wiki/ShareChat

Real-time Event Joining in Practice With Kafka and Flink OARS 2024, October 25, 2024, Boise, ID, USA

(a) System to join incoming real-time events with labels to pre-
pare training samples; using caching components while main-
taining the order of events

(b) Modified system to join incoming real-time events with labels
to prepare training samples; using Kafka and Flink overcoming
the shortcomings of previous approach

Figure 1: System comparison of Approach 1 vs. Approach 2

(a) Out-of-order events (b) Concurrent updates on an ID (c) Inflating queue size

Figure 2: Key Challenges in Event Streaming Pipelines

Figure 3: How pod contention can be solved using intrinsic
properties of Kafka and Flink

2.4.3 Remove Redis. Finally, we can eliminate Redis using Keyed
Streams in Flink and Topic partitioning in Kafka. In the example
shown in Fig 3, Flink processes events for users u1 and u2 across
distinct keyed streams. Flink directs these streams to separate par-
titions in Kafka, and the pods of the consumer job subsequently
consume them. The crucial insight here lies in pre-allocating the
partitions in Kafka and the pods in the training job. Without this
pre-allocation, events for the same user could be assigned to differ-
ent partitions during rebalancing, affecting the training. As seen,
partition1 and pod1 will process all interactions by user1 while
partition2 and pod2 will process all interactions by user2.

2.4.4 Other Optimisations. Data compression is an effective strat-
egy to reduce throughput [2, 26]. We further optimized our pipeline
by transitioning from JSON to Avro schema and employing LZ4
compression, resulting in an 85% reduction in the throughput.

2.5 Analysing the Trade-Offs
2.5.1 At-least Once Delivery. While exactly-once delivery is ideal
for accuracy, it is complex to implement, and the additional com-
plexity does not offset the gains. We implement a de-duplication
layer in the training job, effectively making it an idempotent sink.
So, at-least-once delivery in addition to an idempotent sink is a
much more practical choice for us.

2.5.2 Event & Processing Time. We assess the tradeoffs between
utilizing event time and processing time. Event time is when an
event occurred, while processing time is when Flink starts process-
ing the event. Their lag can be significant due to network delays and
asynchronous environments, such as data transmission via message
queues. The example in Fig 4 shows the tradeoffs between event
and processing time. Event time leads to more accurate results, but
implementing it is more challenging, and we must deal with “late
events”.

2.5.3 Using Watermarks. Let us say we have tumbling windows of
size 1 min each. In Fig 4, window 1 misses event 2, and window 4

https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)

OARS 2024, October 25, 2024, Boise, ID, USA Saket, Chandela et al.

Figure 4: Demonstration of watermark in event processing.

misses event 5. So, how do we solve this? We can use a watermark
[17, 28] to extend our windows by an additional 15 sec. However,
watermarks only assist with slightly delayed events, not those with
significant delays. It is a tradeoff between latency and accuracy:
extending the window boosts accuracy by capturing late events but
adds latency t to the system, and vice versa.

3 RESULTS & OBSERVATIONS

Components Approach 1 Approach 2 Relative Cost Savings
(2 vs 1)

Messaging System PubSub Kafka 55%
Event Joiner Golang Job + Memcache Flink 52%

Redis ✓ - 100%
Schema Json Avro 85%Compression - LZ4

Table 1: Comparison of Approaches and Cost Savings

3.1 Cost Comparison
We compare the cost of the two systems described in Fig 1 by
breaking it at the component level.

3.1.1 PubSub vs. Kafka. We compare the cost difference between
two setups at a peak throughput of 200 MBPS, with a message
retention period of 3 days for both, translating to around 10TiB of
data daily. The Pub/Sub configuration uses a single topic with a
single subscription, while the Kafka setup includes seven brokers.
Currently, the Kafka setup is regional, but switching to a zonal setup
could reduce costs by approximately 25% due to lower inter-zone
egress charges. However, this change would also result in reduced
availability. For a similar setup, we observe the cost of Kafka as
55% lesser than PubSub. We can extrapolate the numbers linearly
as there are five such topics, adjusting the throughput.

3.1.2 Flink vs. Consumer Job. The event joiner in Fig 1a is a job
written in Golang that consumes the events and joins them with
real-time labels via Memcache. The Flink consumer does the same
task in Fig 1b. A GCS bucket is required to store checkpoints for
the Flink job. The combined cost of Flink is 52% lesser than the
Golang job.

3.1.3 Redis and Memcache. The cost of Memcache goes away with
Flink. As described in Section 2.4.3, Flink solves pod contention
using intrinsic properties. So, with Flink in place, Redis’s cost also
goes away.

3.1.4 Data Compression. Asmentioned in 2.4.4, using Avro schema
and LZ4 compression resulted in an 85% reduction in throughput,
leading to similar savings in data ingestion cost.

3.2 Performance or Latency
Both the systems can be scaled horizontally to adjust according to
the incoming traffic. The consumers in Approach 1 scale according
to the number of unacked messages or oldest unacked message age
in PubSub, along with CPU & memory utilization. Flink also allows
dynamic adjustment of resources based on workload, helping to
optimize performance and cost. However, it requires re-partitioning
in the Kafka topic associated with the job, the implementation of
which is slightly complex. Currently, we provision Flink to handle
maximum traffic and are exploring autoscaling as future work. Both
setups ensure comparable performance after tuning, resulting in
similar latency.

3.3 Data Validation
The switch from Approach 1 to Approach 2 was verified by setting
up a system where the same events were duplicated and processed
through both pipelines. Initially, we directed 0.1% of the traffic
through each pipeline to separate storage tables and compared the
tables for accuracy. After confirming correctness (match rate &
schema), we gradually increased the traffic to 100% before transi-
tioning to production. Finally, we decommissioned the old pipeline.

4 CONCLUSION & FUTUREWORK
This paper explores the implications of design choices for process-
ing streaming events to generate training samples for machine
learning models. We address key challenges such as real-time label
joining, handling out-of-order events, and managing concurrent
updates. By comparing trade-offs, we illustrate how to make in-
formed design decisions for specific use cases. We further see how
we can leverage the intrinsic properties of frameworks and plat-
forms to simplify the system and make it more cost-effective. A
one-line takeaway is that our decisions must consider cost, correct-
ness, latency, maintainability, and the trade-offs we are prepared to
accept.

The subsequent steps for this project involve implementing au-
toscaling for the Flink job.We also plan to minimize the source topic
count by consolidating them under one topic, which will enhance
system management and help further decrease costs.

Real-time Event Joining in Practice With Kafka and Flink OARS 2024, October 25, 2024, Boise, ID, USA

5 ACKNOWLEDGEMENTS
We sincerely thank Arya Ketan for his guidance on design choices
and Shubham Dhal for his dedicated assistance with the imple-
mentation. Their contributions greatly improved the quality of this
project.

REFERENCES
[1] Vibhatha Abeykoon, Supun Kamburugamuve, Kannan Govindrarajan, Pulasthi

Wickramasinghe, Chathura Widanage, Niranda Perera, Ahmet Uyar, Gurhan
Gunduz, Selahattin Akkas, and Gregor Von Laszewski. 2019. Streaming machine
learning algorithms with big data systems. In 2019 IEEE International Conference
on Big Data (Big Data). IEEE, 5661–5666.

[2] Mohammed Al-Laham and Ibrahiem MM El Emary. 2007. Comparative study
between various algorithms of data compression techniques. IJCSNS 7, 4 (2007),
281.

[3] Tania Banerjee and Sartaj Sahni. 2015. Pubsub: An Efficient Publish/Subscribe
System. IEEE Trans. Comput. 64, 4 (2015), 1119–1132. https://doi.org/10.1109/TC.
2014.2315636

[4] Albert Bifet, Ricard Gavalda, Geoffrey Holmes, and Bernhard Pfahringer. 2023.
Machine learning for data streams: with practical examples in MOA. MIT press.

[5] Brad Fitzpatrick. 2004. Distributed caching with memcached. Linux J. 2004, 124
(aug 2004), 5.

[6] Heitor Murilo Gomes, Jesse Read, Albert Bifet, Jean Paul Barddal, and João Gama.
2019. Machine learning for streaming data: state of the art, challenges, and
opportunities. ACM SIGKDD Explorations Newsletter 21, 2 (2019), 6–22.

[7] Jinlin Guo, Haoran Wang, Xinwei Li, and Li Zhang. 2021. Stream classification
algorithm based on decision tree. Mobile Information Systems 2021, 1 (2021),
3103053.

[8] Jiawei Han, Jian Pei, and Hanghang Tong. 2022. Data mining: concepts and
techniques. Morgan kaufmann.

[9] Muhammad Hanif, Hyeongdeok Yoon, and Choonhwa Lee. 2020. A Backpressure
Mitigation Scheme inDistributed StreamProcessing Engines. In 2020 International
Conference on Information Networking (ICOIN). 713–716. https://doi.org/10.1109/
ICOIN48656.2020.9016513

[10] Waqas Jamil, NC Duong, W Wang, Chemseddine Mansouri, Saad Mohamad,
and Abdelhamid Bouchachia. 2018. Scalable online learning for flink: SOLMA
library. In Proceedings of the 12th European Conference on Software Architecture:
Companion Proceedings. 1–4.

[11] Yuchin Juan, Damien Lefortier, and Olivier Chapelle. 2017. Field-aware factor-
ization machines in a real-world online advertising system. In Proceedings of the
26th International Conference on World Wide Web Companion. 680–688.

[12] Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. 2016. Field-
aware factorization machines for CTR prediction. In Proceedings of the 10th ACM
conference on recommender systems. 43–50.

[13] Supun Kamburugamuve, Pulasthi Wickramasinghe, Saliya Ekanayake, and Geof-
frey C Fox. 2018. Anatomy of machine learning algorithm implementations in
MPI, Spark, and Flink. The International Journal of High Performance Computing
Applications 32, 1 (2018), 61–73.

[14] Asterios Katsifodimos and Sebastian Schelter. 2016. Apache Flink: Stream Analyt-
ics at Scale. In 2016 IEEE International Conference on Cloud Engineering Workshop
(IC2EW). 193–193. https://doi.org/10.1109/IC2EW.2016.56

[15] Jay Kreps. 2011. Kafka : a Distributed Messaging System for Log Processing.
https://api.semanticscholar.org/CorpusID:18534081

[16] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher
Kellogg, Sailesh Mittal, Jignesh M Patel, Karthik Ramasamy, and Siddarth Taneja.
2015. Twitter heron: Stream processing at scale. In Proceedings of the 2015 ACM
SIGMOD international conference on Management of data. 239–250.

[17] S. Lam and A. Xu. 2022. System Design Interview - An Insider’s Guide: Volume 2.
Number v. 2. Amazon Digital Services LLC - Kdp. https://books.google.com/
books?id=1Sr7zgEACAAJ

[18] Dingcheng Li, Xu Li, Jun Wang, and Ping Li. 2020. Video Recommendation
with Multi-gate Mixture of Experts Soft Actor Critic. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval (Virtual Event, China) (SIGIR ’20). Association for ComputingMachinery,
New York, NY, USA, 1553–1556. https://doi.org/10.1145/3397271.3401238

[19] Qian Lin, Beng Chin Ooi, Zhengkui Wang, and Cui Yu. 2015. Scalable distributed
stream join processing. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. 811–825.

[20] Qingyun Liu, Zhe Zhao, Liang Liu, Zhen Zhang, Junjie Shan, Yuening Li, Shuchao
Bi, Lichan Hong, and Ed H. Chi. 2023. Multitask Ranking System for Immersive
Feed and No More Clicks: A Case Study of Short-Form Video Recommendation.
In Proceedings of the 32nd ACM International Conference on Information and
Knowledge Management (Birmingham, United Kingdom) (CIKM ’23). Association
for Computing Machinery, New York, NY, USA, 4709–4716. https://doi.org/10.
1145/3583780.3615489

[21] Zhuoran Liu, Leqi Zou, Xuan Zou, Caihua Wang, Biao Zhang, Da Tang,
Bolin Zhu, Yijie Zhu, Peng Wu, Ke Wang, and Youlong Cheng. 2022. Mono-
lith: Real Time Recommendation System With Collisionless Embedding Table.
arXiv:2209.07663 [cs.IR] https://arxiv.org/abs/2209.07663

[22] Ramesh Marpu and Bairam Manjula. 2024. Streaming machine learning algo-
rithms with streaming big data systems. Brazilian Journal of Development (2024).
https://api.semanticscholar.org/CorpusID:266830686

[23] Shadi A Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon Bringhurst,
Indranil Gupta, and Roy H Campbell. 2017. Samza: stateful scalable stream
processing at LinkedIn. Proceedings of the VLDB Endowment 10, 12 (2017), 1634–
1645.

[24] Srijan Saket, Olivier Jeunen, and Md. Danish Kalim. 2024. Monitoring the
Evolution of Behavioural Embeddings in Social Media Recommendation. In
Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval (Washington DC, USA) (SIGIR ’24). As-
sociation for Computing Machinery, New York, NY, USA, 2935–2939. https:
//doi.org/10.1145/3626772.3661368

[25] Srijan Saket, Sai Baba Reddy Velugoti, and Rishabh Mehrotra. 2023. Formulating
Video Watch Success Signals for Recommendations on Short Video Platforms..
In LERI@ RecSys. 41–48.

[26] Khalid Sayood. 2017. Introduction to data compression. Morgan Kaufmann.
[27] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M

Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,
et al. 2014. Storm@ twitter. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data. 147–156.

[28] Tawfik Yasser, Tamer Arafa, Mohamed El-Helw, and Ahmed Awad. 2023. Keyed
Watermarks: A Fine-grained Tracking of Event-time in Apache Flink. In 2023
5th Novel Intelligent and Leading Emerging Sciences Conference (NILES). 23–28.
https://doi.org/10.1109/NILES59815.2023.10296717

[29] Yang Zhang, Yimeng Bai, Jianxin Chang, Xiaoxue Zang, Song Lu, Jing Lu, Fuli
Feng, Yanan Niu, and Yang Song. 2023. Leveraging watch-time feedback for
short-video recommendations: A causal labeling framework. In Proceedings of the
32nd ACM International Conference on Information and Knowledge Management.
4952–4959.

https://doi.org/10.1109/TC.2014.2315636
https://doi.org/10.1109/TC.2014.2315636
https://doi.org/10.1109/ICOIN48656.2020.9016513
https://doi.org/10.1109/ICOIN48656.2020.9016513
https://doi.org/10.1109/IC2EW.2016.56
https://api.semanticscholar.org/CorpusID:18534081
https://books.google.com/books?id=1Sr7zgEACAAJ
https://books.google.com/books?id=1Sr7zgEACAAJ
https://doi.org/10.1145/3397271.3401238
https://doi.org/10.1145/3583780.3615489
https://doi.org/10.1145/3583780.3615489
https://arxiv.org/abs/2209.07663
https://arxiv.org/abs/2209.07663
https://api.semanticscholar.org/CorpusID:266830686
https://doi.org/10.1145/3626772.3661368
https://doi.org/10.1145/3626772.3661368
https://doi.org/10.1109/NILES59815.2023.10296717

	Abstract
	1 Introduction
	2 Methodology
	2.1 Data Context & User Signals
	2.2 Generating Training Samples
	2.3 Key Challenges
	2.4 Making ``Better'' System Choices
	2.5 Analysing the Trade-Offs

	3 Results & Observations
	3.1 Cost Comparison
	3.2 Performance or Latency
	3.3 Data Validation

	4 Conclusion & Future Work
	5 Acknowledgements
	References

