
A Good State Estimator Can Yield A Simple Recommender: A
Reinforcement Learning Perspective

Dilina Chandika Rajapakse
rajapakd@tcd.ie

Trinity College Dublin
Ireland

Douglas Leith
doug.leith@tcd.ie

Trinity College Dublin
Ireland

ABSTRACT
In our study, we look at the application of (1) two offline Reinforce-
ment Learning based recommenders (Decision Transformer and
Prompt-based Reinforcement Learning PRL) and (2) a much simpler
Neural Network based Value Network (MLP). We evaluate their
performance in cold start conditions, where a user’s preferences
are not fully known, making recommendations challenging with
uncertain ’states’. We show that in our experiments, the simple
MLP value network outperforms both the Decision Transformer
and PRL as well as Monte-Carlo Tree Search, the latter having
previously shown state of the art performance in user-cold start
recommendation. We also benchmark the performance of the MLP
and transformer-based approaches under various conditions. We
speculate that the ’state’ estimation plays a key role in Reinforce-
ment Learning based Recommendation Systems. With a good state
estimation technique, even a basic Neural Network can be em-
ployed for effective recommendations, while requiring minimal
computational power.

CCS CONCEPTS
• Information systems → Recommender systems; • Comput-
ing methodologies → Reinforcement learning.

KEYWORDS
Recommender Systems, Deep Learning, Offline Reinforcement Learn-
ing
ACM Reference Format:
Dilina Chandika Rajapakse and Douglas Leith. 2024. A Good State Estimator
Can Yield A Simple Recommender: A Reinforcement Learning Perspective.
In . ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3627673.
3679083

1 INTRODUCTION
Personalisation, where the system caters to each user’s individ-
ual preferences, is a key aspect of recommender systems. This is
perhaps most conspicuously seen in user-cold start, where a rec-
ommender needs to quickly learn about a new user’s preferences.
To assist with this most systems leverage information about the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
OARS 2024, October 25, 2024, Boise, ID, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0436-9/24/10
https://doi.org/10.1145/3627673.3679083

existing users. One such approach is to cluster users into groups
based on existing user data and then to select the items that a new
user is asked to rate so as to quickly learn which group the new
user belongs to.

Recent work [15, 16, 19] has shown how bandits and Monte
Carlo Tree Search (MCTS) can be used to tackle this cold start task.
MCTS treats the cold start task as a single-player game and aims to
maximise a reward, e.g. the probability that the user is assigned to
the correct group and/or the sum of the user’s item ratings. MCTS
maintains a user state that corresponds to the probability that the
user belongs to each of the possible user groups and carries out a
lookahead search for the next item to recommend. When run for
sufficiently many steps it is guaranteed to find an optimal solution
but a major practical limitation of MCTS is the computational cost
of the exploratory search step, which increases exponentially with
the size of the set of possible actions. Recently, it has been shown
that this search step can sometimes be replaced by a transformer
neural network trained in a supervised manner e.g. [18] show this
for chess play.

In a parallel line of work, there has been a growing interest
in using Reinforcement Learning (RL) for Recommender Systems,
including transformer-basedmethods [23, 28]. This work hasmostly
been focused on generating item sequences given a history of user
(item, rating, state) triplets. During cold start only a short history
is available (or even none at all). In the literature the state is
either assumed to be directly observed or is estimated in an ad
hoc manner, although [10, 25] observe that state-estimation can
have a substantial impact on recommender performance.

A common feature of these MCTS and RL approaches is that
they effectively take the state as a given and mainly focus effort
on the mapping from (item, rating, state) triples to the next item
recommendation. In this paper we refocus attention on the state
estimation aspect of these approaches. We examine cold start as the
user’s state is quickly evolving, providing a challenging test of state
estimation. Our experimental results show that, given the state of a
user, even a simple model such as an MLP achieves competitive rec-
ommendation performance. There no need for the computationally
expensive search step in MCTS and there is no need to use complex
deep learning neural nets in RL. Our results therefore suggest that
we should place much more emphasis on finding good ways of
estimating the state in MCTS and RL for recommenders, while time
spent on developing complex models and reward policies may yield
only limited benefits.

2 RELATEDWORK
For a relatively recent survey of solutions to user cold-start see
[6, 7]. Passive approaches include recommending popular items,

https://orcid.org/0000-0001-9722-9108
https://orcid.org/0000-0003-4056-4014
https://doi.org/10.1145/3627673.3679083
https://doi.org/10.1145/3627673.3679083
https://doi.org/10.1145/3627673.3679083

OARS 2024, October 25, 2024, Boise, ID, USA Dilina Chandika Rajapakse and Douglas Leith

use of item-based recommendation, transfer learning from another
recommender system previously used by a user, and asking new
users to rate a fixed list of items. Examples of early work on active
learning include information gain through clustered neighbors
(IGCN) which uses a decision tree with user clusters as leaves [17]
and the decision-tree approach of [8]. More recently, the group-
based approach of [2] is extended to use a decision-tree approach
by [20]. In [29] a matrix factorization approach is proposed whereby
a decision-tree is trained to map from item ratings to the latent
feature vector for a user. Seep learning methods for cold start are
considered by [13, 22]. Recently, in [15, 16] Monte Carlo Tree Search
(MCTS) is shown to achieve state of the art performance for user
cold start.

Reinforcement learning techniques has shown promising results
in sequential and long-term recommendations, see [1] for a sur-
vey of RL in RS. Value-based methods such as Deep Q-Networks
make use of deep learning models to predicts the Q-values of all
actions given the current state, or Q-value of a given state-action
pair. Following the introduction of the transformer architecture
in [21] for text processing, there has been interest in the applica-
tions of transformer neural networks in non-text domains. The
Trajectory Transformer [11] and Decision Transformer (DT) [4]
are perhaps the first papers to apply transformers to reinforce-
ment learning but there is now a quickly growing literature on
transformer-based RL, e.g. see [14, 26, 27]. In the context of recom-
mender systems, CDT4Rec [23] and DT4Rec [28] have very recently
proposed transformer-based RL methods. Similarly, [25] adopts the
prompt based style in Decision Transformers, by formulating the
offline RL task in a supervised manner.

RL based recommenders such as in [23–25], have shown to sur-
pass non-RL methods like GRU4Rec[9], SASRec[12], in sequential
and session-based recommendation tasks. However it can be argued
that these next-item-prediction evaluations conducted in offline set-
tings may not optimally test the explore-exploit capabilities of the
RL recommenders [5]. Additionally, there is very limited literature
on RL in cold-start recommendation.

3 PRELIMINARIES
3.1 Problem Formulation
Item recommendation is a Reinforcement Learning task where the
RL agent (the recommender) interacts with the environment (the
user) by taking actions (recommending items) and observing the
reward (feedback from the users). The RL task is as follows: given
a sequence of (state, item, rating) triplets {(𝑠𝑖 , 𝑣𝑖 , 𝑟𝑖), 𝑖 = 0, . . . , 𝑡}
predict the next item 𝑣𝑡+1 to display so as to maximise the sum-
rating 𝑅𝑡 =

∑𝑡
𝑖=0 𝑟𝑖 . The state is an information state that embodies

user preferences and context. In the general RL literature the state is
usually assumed to be directly observed, while in the recommender
RL literature it is more commonly estimated e.g. using an LSTM.

3.2 State Estimation
In order to focus on the RL aspect of cold start recommendation,
we construct our experiments so that the ground truth user state is
known. There is a set G of user groups, each user belonging to one
group𝑔 ∈ G. For users belonging to group𝑔 the rating𝑅(𝑣) of item 𝑣

is i.i.d. gaussian with mean 𝜇 (𝑔, 𝑣) and variance 𝜎2 (𝑔, 𝑣). If asked re-
peatedly to rate the same item then the user responds with the same
rating. Denoting the user’s group by random variable𝐺 , we have
that 𝑝 (𝑅(𝑣) = 𝑟 |𝐺 = 𝑔) = (1/

√
2𝜋𝜎 (𝑔, 𝑣))𝑒−(𝑟−𝜇 (𝑔,𝑣))2/2𝜎2 (𝑔,𝑣) . We

let 𝑝 (𝑡)𝑔 be the probability that the user belongs to group 𝑔 given the
user has rated items V (𝑡) = {𝑣1, . . . , 𝑣𝑡 }. Initially, for a new user
𝑡 = 0,V (0) is the empty set and the probabilities 𝑝 (𝑡)𝑔 , 𝑔 ∈ G are ini-
tialised to the uniform distribution 𝑝 (0)𝑔 = 1/|G|. The state of a user
is the vector of group probabilities 𝑃 (𝑡) = (𝑝 (𝑡)1 , 𝑝

(𝑡)
2 , · · · , 𝑝 (𝑡)|𝐺 |).

Incorporating trainable state-encoders, such as GRUs or CNNs,
can be commonly seen in RL literature. These need to be trained
concurrently with the RL-models. As a result of this, the state gen-
erated by the encoders will differ across models since the learned
weights are specific to each training instance. We considered our
group-membership based state to be a good state estimate to con-
duct our experiments in a controlled and reproducible manner.

3.3 Decision Transformer

Figure 1: Decision Transformer Architecture

The Decision Transformer (DT) [4] uses a transformer neural
net for Reinforcement Learning, see Figure 1. To generate the 𝑡 ’th
item recommendation the input consists of a sequence of past (state,
reward, item) triplets (𝑠𝑖 , 𝑟𝑖 , 𝑣𝑖) for 𝑖 = 0, . . . , 𝑡 − 1 plus (𝑠𝑡 , 𝑟𝑡)where
𝑟𝑡 is the target rating for the next item (for a recommender we
use the highest possible item rating). The Decision Transformer
outputs a probability distribution over the set of items. We select
the item with highest probability not yet rated by the user as the
recommendation.

3.3.1 Input Embedding. The inputs {(𝑠𝑖 , 𝑟𝑖 , 𝑣𝑖 ,), 𝑖 = 0, . . . , 𝑡} are
passed through an embedding layer, which maps the inputs into a
sequence of high-dimensional token embeddings with a size 𝑑 =

128. To embed the temporal information of the inputs, positional
encodings are added to the corresponding input embeddings, before
being fed into the transformer blocks.

3.3.2 Transformer Block. The input token embeddings are fed to
a stack of 𝑁 transformer blocks, which consist of multi-head self
attention layers. A causal attention mask ensures that only the prior
inputs are attended. We use 2 transformer blocks (𝑁 = 2) with 4
heads (ℎ = 4) in each attention layer.

3.3.3 Action Decoder. The output from the transformer blocks is
passed through an action decoder, which consist of a linear layer,
followed by a softmax activation.

A Good State Estimator Can Yield A Simple Recommender: A Reinforcement Learning Perspective OARS 2024, October 25, 2024, Boise, ID, USA

Figure 2: PRL recommender Architecture

3.3.4 Loss and Training. The training data consists of sequences of
(item,rating) pairs for a population of users. The items are selected
randomly. We use the cross entropy loss between the decision
transformer prediction and the item 𝑣𝑡 in the training data.

3.4 Prompt-based Reinforcement Learning
Prompt-based Reinforcement Learning [25] (PRL) is an offline-RL
approach specifically designed for recommender systems. Similarly
to the Decision Transformer, the input is a history of (reward, item)
pairs together with the target reward for the next item. The output
is a probability distribution over the set of items and we select
the item with highest probability not yet rated by the user as the
recommendation. The architecture is shown schematically in Figure
2.

PRL is trained in a supervised manner, similarly to the Decision
Transformer. For each offline collected sequence of (item,reward)
pairs with length 𝑡 , a prompt is generated which includes the cur-
rent state, reward and the timestep. In [25] the current state 𝑠𝑡 is
calculated using the past history of item interactions (𝑣𝑖 , 𝑟𝑖) for
𝑖 = 0, . . . , 𝑡 − 1 using a variety of sequential models but here we use
the state estimation method mentioned in Section 3.2. The state 𝑠𝑡 ,
reward 𝑟𝑡 and timestep 𝑡 are mapped to latent representations using
embedding layers. These are then passed into a self-attention block
whose output is a probability distribution over the set of items. A
cross-entropy loss is calculated between the predicted item vector
apredt against the observed item 𝑣𝑡 in the training data.

During inference, the input prompt is generated using an ex-
pected reward 𝑅𝑡 , along with the state 𝑠𝑡 at timestep 𝑡 . In our
experiments, 𝑅𝑡 was set to the highest possible item reward.

3.5 MLP Value Network
As a simpler alternative we also consider the MLP recommender
shown in Figure 3.

Figure 3: MLP Value Network Architecture

The input is a (state, item) pair (𝑠𝑡 , 𝑣). The output is the predicted
rating for item 𝑣 . We select the item with highest rating not yet
rated by the user as the recommendation.

3.5.1 Input Embedding. The state 𝑠𝑡 and item 𝑣 inputs are mapped
to 𝑑 dimensional vectors via an embedding layer. We use an em-
bedding size of 𝑑 = 128.

3.5.2 Value Estimator. The input embeddings are passed through
an MLP with one hidden layer having the number of neurons equal
to the embedding size. The output is the predicted reward for the
input item.

3.5.3 Loss and Training. The training data used is the same as
that for the Decision Transformer. We use mean square error loss
between the predicted rating and the item rating in the training
sequence.

4 MEASURED PERFORMANCE
4.1 Experimental Setup
4.1.1 Simulation Environment. To allow us to evaluate the perfor-
mance in a clean, reproducible manner we use a simulation envi-
ronment that allows us to generate users with known ground-truth
item-ratings. Similarly to [15, 16, 19], each simulation environment
is derived from a measurement dataset consisting of (user, item,
ratings) triples. We use three public datasets Netflix1, Goodreads2
and Movielens10M3 . For each dataset we cluster users into groups
(we use the BLC matrix-factorization clustering algorithm [3] for
this, although other clustering algorithms (such as k-means) might
also be used) and estimate the mean 𝜇 (𝑔, 𝑣) and variance 𝜎 (𝑔, 𝑣)2
of the ratings by each group 𝑔 for item 𝑣 . For each user belonging
to group 𝑔, we generate the rating for an item 𝑣 by making a single
draw from the multivariate Gaussian distribution with mean 𝜇 (𝑔, 𝑣)
and variance 𝜎 (𝑔, 𝑣)2.

This environment enables the generation of sparse user-rating
data for training, allowing us to immitate a recommender system
dataset. For each user in a group 𝑔 ∈ G, we randomly sample
between 10 and 200 items. Although item sampling based on pop-
ularity (i.e., the number of interactions) is an option, we choose
to sample items uniformly to reduce potential biases within the
training data as far as possible. For evaluation, we generate user
item-ratings for 250 test users from each user group.

It is also possible to allow the RL agent to interact with the
simulation environment and follow an on-policy learning strategy,
commonly employed in RL applications. However this approach is
often impractical in the context of recommender systems.

4.1.2 Metrics. Mean rating across iterations 𝑅@𝑡 : The mean item
rating is 𝑅@𝑡 = 1

𝑡

∑𝑡−1
𝑖=0 𝑟𝑖 where 𝑟𝑖 is the rating of the 𝑖’th item

presented to a user. This corresponds to the sum-rating utility that
we would like to maximise in the RL setup, and so is our primacy
performance measure.

1https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data
2https://mengtingwan.github.io/data/goodreads
3https://grouplens.org/datasets/movielens/

https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data
https://mengtingwan.github.io/data/goodreads
https://grouplens.org/datasets/movielens/

OARS 2024, October 25, 2024, Boise, ID, USA Dilina Chandika Rajapakse and Douglas Leith

4.1.3 Baselines. We evaluate the cold-start performance of the
Decision Transformer (DT), Prompt-based RL recommender (PRL)
and the MLP Value network against two baselines:
(1) Monte Carlo Tree Search (MCTS): This is a strong baseline that
represents state of the art user cold start performance. We use a
variant of the MCTS[16] recommender, that takes an RL approach
to not only focus on learning the user-groups, but also maximising
a sum rating reward.
(2) Random-Uniform (R-U): This presents items selected uniformly
at random from the items not yet viewed by the user. This random
baseline represents the population of training data, on which our
DT and MLP are trained on.

4.1.4 Hardware and Software. The training and evaluations were
conducted on a machine with a 32-core AMD Ryzen CPU and 2
× NVIDIA GeForce RTX 4090 GPUs. Our implementation4 also
includes the recommendation environment and the datasets.

4https://github.com/dilina-r/rl_estimator

dataset algo
iterations

5 10 15 20 25

Netflix 8

R-U 3.231 3.219 3.214 3.211 3.213
MCTS 3.837 3.968 4.019 4.050 4.069
PRL 4.546 4.475 4.430 4.409 4.387
DT 4.559 4.487 4.445 4.422 4.407
MLP 4.566 4.498 4.463 4.434 4.417

Goodreads 8

R-U 3.535 3.542 3.546 3.545 3.543
MCTS 3.839 3.882 3.866 3.858 3.854
PRL 4.140 4.148 4.130 4.103 4.082
DT 4.260 4.218 4.189 4.164 4.146
MLP 4.268 4.237 4.204 4.173 4.149

Movielens 8

R-U 3.166 3.157 3.161 3.160 3.159
MCTS 3.753 3.814 3.846 3.867 3.880
PRL 4.096 4.083 4.082 4.068 4.062
DT 4.179 4.149 4.135 4.119 4.109
MLP 4.181 4.152 4.138 4.122 4.106

Netflix 16

R-U 3.319 3.325 3.322 3.321 3.321
MCTS 3.773 3.883 3.942 3.978 4.006
PRL 4.465 4.404 4.352 4.344 4.327
DT 4.532 4.437 4.393 4.373 4.362
MLP 4.531 4.451 4.407 4.385 4.368

Goodreads 16

R-U 3.604 3.604 3.606 3.609 3.609
MCTS 3.815 3.855 3.877 3.886 3.893
PRL 4.189 4.120 4.087 4.051 4.013
DT 4.241 4.188 4.148 4.121 4.104
MLP 4.240 4.194 4.149 4.118 4.091

Movielens 16

R-U 3.360 3.360 3.369 3.368 3.367
MCTS 3.849 3.893 3.920 3.940 3.950
PRL 4.153 4.089 4.046 4.027 4.017
DT 4.191 4.172 4.166 4.162 4.154
MLP 4.194 4.168 4.148 4.134 4.121

Table 1: Mean ratings across 𝑡 recommendations (𝑅@𝑡) with
Random-uniform (R-U), MCTS, PRL, Decision Transformer
(DT) and Value Network (MLP) for Netflix, Goodreads, Movie-
lens10M datasets with 8 and 16 groups

4.2 MLP Outperforms Other Methods
When a new user joins the system, the system initially presents an
item to the user and in turn the user provides a feedback (i.e: rating).
The system then continues to present the user with items, while
learning from the feedback to the previously recommended items.
To evaluate the cold-start performance, we generate new users
belonging to each group 𝑔 ∈ 𝐺 , from the simulation environment.

Table 1 shows the mean reward for between 5 and 25 item recom-
mendations measured for the Netflix, Goodreads andMovielens10M
datasets with 8 and 16 groups. The highest values are indicated in
bold. Note that this is a fair comparison in the sense that all of the
approaches have access to the same user data, including the same
state estimate.

Surprisingly, at least to the authors, it can be seen that the MLP
value network consistently achieves the better performance com-
pared to PRL and MCTS. The Decision Transformer and MLP are
on par, each showing superior performance under different datasets
and conditions. This is despite the fact that the MLP is considerably
simpler than the Decision Transformer and PRL architectures. The
MLP is also much simpler than the MCTS approach which requires
an expensive exploratory lookahead search for the best item.

This has significant implications. In particular, it means that
there is little value to be gained by adding complexity to the RL
component of DT, PRL and MCTS recommenders. Indeed in our
experience adding extra complexity may lead to a loss in perfor-
mance. For the DT this loss in performance is presumably due to
the greater difficulty of training, while for MCTS the high compu-
tational burden means that the exploration needs to be curtailed
which can degrade performance.

By design, the state is explicitly known in these tests so as to
avoid confounding effects associated with state estimation. We
leave evaluation of the impact of state estimation errors to future
work, but note that our results suggest that the primary effort in
RL recommenders should be devoted to designing good state esti-
mators. In contrast, most of the current recommender RL literature
focuses on designing the mapping from (state, reward, item) triplets
to the next item, which of course is also the main focus of the RL
literature generally.

It is also worth noting that the Decision Transformer not only
receives a state input at each step, but also receives the (item,reward)
pairs of the user’s past interactions. The history of past (item,reward)
pairs is enough to allow the state to be calculated.

4.3 Computational Cost
In addition to achieving strong recommendation performance, the
MLP value network is also cheaper computationally than the Deci-
sion Transformer and PRL. This can be seen from Table 2 which
shows the measured compute time of the MLP, DT and PRL for the
Netflix dataset as the size of the set of items available to be recom-
mended is varied. The compute time shown is the average time to
recommend 25 items to a user, including the state-estimation and
model prediction times. Also shown in Table 2 is the GPU memory
used by each approach during the evaluations.

This is perhaps unsurprising given the simplicity of the MLP, but
recall that the MLP outputs the predicted rating for a single item
and so to predict the next item to recommend it needs to be run for

https://github.com/dilina-r/rl_estimator

A Good State Estimator Can Yield A Simple Recommender: A Reinforcement Learning Perspective OARS 2024, October 25, 2024, Boise, ID, USA

dataset #items
no. of parameters avg time/25 recs (ms) allocated GPU mem (MB) 𝑅@25

MLP DT PRL MLP DT PRL MLP DT PRL MLP DT PRL
Netflix-S 752 34,689 546,672 227,312 8.92 43.89 14.67 8.63 11.48 8.99 4.417 4.407 4.387
Netflix-M 4,804 34,689 1,069,380 750,020 11.60 43.01 14.86 10.60 16.62 10.99 4.374 4.380 4.326
Netflix-L 15,020 34,689 2,387,244 2,067,884 15.92 43.52 15.20 15.59 29.55 16.01 4.358 4.361 4.298

Table 2: Average recommendation time per user, model parameter count, GPU memory usage, Mean reward 𝑅@25 for the Value
Network (MLP) and Decision Transformer (DT), with varying available number of items - Netflix 8 groups dataset

every item not yet rated by the user. Thus the computational cost of
the MLP increases linearly with the number of items, although this
might be compensated by implementing batch-predictions. The
Decision Transformer and PRL both output a probability vector
over the set of possible items, which scales with the number of
items. However, it can be seen from Table 2 that the compute time
for DT and PRL increases slightly with the number of items and so
the compute burden is dominated by other components of these
networks.

MCTS data is not included in Table 2 because we found that the
computational burden quickly becomes too high as the number of
available items is increased it grows exponentially in the number
of items). We also note that MCTS is not well suited to GPU imple-
mentation and so is difficult to benchmark fairly against the MLP
and DT approaches which use a GPU.

The last column of Table 2 also summarises how the recommen-
dation performance varies with the number of available items. It
can be seen that the performance tends to fall as the number of
items is increased, presumably reflecting the increased difficulty
of finding the best item to recommend when the pool of available
items is larger. However, it can also be seen that the decrease in
performance is much more pronounced for PRL compared to the
MLP and DT.

5 CONCLUSION
Our results suggest that there is little value to be gained by adding
complexity to the RL component of DT, PRL and MCTS recom-
menders. Indeed the extra complexity may lead to a loss in perfor-
mance. Rather the primary effort in RL recommenders should be
devoted to designing good state estimators.

REFERENCES
[1] M Mehdi Afsar, Trafford Crump, and Behrouz Far. 2022. Reinforcement learning

based recommender systems: A survey. Comput. Surveys 55, 7 (2022), 1–38.
[2] Xavier Amatriain, Neal Lathia, Josep M. Pujol, Haewoon Kwak, and Nuria Oliver.

2009. The Wisdom of the Few: A Collaborative Filtering Approach Based on
Expert Opinions from the Web. In Proc SIGIR (Boston, MA, USA). 532–539. https:
//doi.org/10.1145/1571941.1572033

[3] Alessandro Checco, Giuseppe Bianchi, and Douglas J. Leith. 2017. BLC: Private
Matrix Factorization Recommenders via Automatic Group Learning. ACM Trans.
Priv. Secur. 20, 2, Article 4 (May 2017), 25 pages. https://doi.org/10.1145/3041760

[4] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha
Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. 2021. Deci-
sion Transformer: Reinforcement Learning via Sequence Modeling. In Ad-
vances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran Associates,
Inc., 15084–15097. https://proceedings.neurips.cc/paper_files/paper/2021/file/
7f489f642a0ddb10272b5c31057f0663-Paper.pdf

[5] Romain Deffayet, Thibaut Thonet, Jean-Michel Renders, and Maarten De Rijke.
2023. Offline evaluation for reinforcement learning-based recommendation: a
critical issue and some alternatives. In ACM SIGIR Forum, Vol. 56. ACM New
York, NY, USA, 1–14.

[6] Mehdi Elahi, Matthias Braunhofer, Tural Gurbanov, and Francesco Ricci. 2018.
User Preference Elicitation, Rating Sparsity and Cold Start. Collaborative Recom-
mendations (2018), 253–294. https://doi.org/10.1142/9789813275355_0008

[7] Mehdi Elahi, Francesco Ricci, and Neil Rubens. 2016. A survey of active learning
in collaborative filtering recommender systems. Computer Science Review 20
(2016), 29–50. https://doi.org/10.1016/j.cosrev.2016.05.002

[8] Nadav Golbandi, Yehuda Koren, and Ronny Lempel. 2011. Adaptive Bootstrapping
of Recommender Systems Using Decision Trees. In Proc WSDM (Hong Kong,
China). 595â604. https://doi.org/10.1145/1935826.1935910

[9] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[10] Jin Huang, Harrie Oosterhuis, Bunyamin Cetinkaya, Thijs Rood, and Maarten de
Rijke. 2022. State encoders in reinforcement learning for recommendation: A re-
producibility study. In Proceedings of the 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval. 2738–2748.

[11] Michael Janner, Qiyang Li, and Sergey Levine. 2021. Offline Reinforce-
ment Learning as One Big Sequence Modeling Problem. In Advances in Neu-
ral Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran Associates,
Inc., 1273–1286. https://proceedings.neurips.cc/paper_files/paper/2021/file/
099fe6b0b444c23836c4a5d07346082b-Paper.pdf

[12] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE international conference on data mining (ICDM). IEEE,
197–206.

[13] Sergio Oramas, Oriol Nieto, Mohamed Sordo, and Xavier Serra. 2017. A deep
multimodal approach for cold-start music recommendation. In Proceedings of the
2nd workshop on deep learning for recommender systems. 32–37.

[14] Aaron L Putterman, Kevin Lu, IgorMordatch, and Pieter Abbeel. 2021. Pretraining
for language conditioned imitation with transformers. (2021).

[15] Dilina Chandika Rajapakse and Douglas Leith. [n. d.]. User Cold-Start Learning
In Recommender Systems Using Monte Carlo Tree Search. ACM Transactions on
Recommender Systems ([n. d.]).

[16] Dilina Chandika Rajapakse and Douglas Leith. 2022. Fast and Accurate User
Cold-Start Learning Using Monte Carlo Tree Search. In Proceedings of the 16th
ACM Conference on Recommender Systems. 350–359.

[17] Al Mamunur Rashid, George Karypis, and John Riedl. 2008. Learning Preferences
of New Users in Recommender Systems: An Information Theoretic Approach.
SIGKDD Explor. Newsl. 10, 2 (Dec. 2008), 90â100. https://doi.org/10.1145/1540276.
1540302

[18] Anian Ruoss, Grégoire Delétang, Sourabh Medapati, Jordi Grau-Moya, Li Kevin
Wenliang, Elliot Catt, John Reid, and Tim Genewein. 2024. Grandmaster-level
chess without search. arXiv preprint arXiv:2402.04494 (2024).

[19] Sulthana Shams, Daron Anderson, and Douglas Leith. 2021. Cluster-based bandits:
Fast cold-start for recommender system new users. In Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 1613–1616.

[20] Lei Shi, Wayne Xin Zhao, and Yi-Dong Shen. 2017. Local Representative-Based
Matrix Factorization for Cold-Start Recommendation. ACM Trans. Inf. Syst. 36, 2,
Article 22 (Aug. 2017), 28 pages. https://doi.org/10.1145/3108148

[21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[22] Maksims Volkovs, Guangwei Yu, and Tomi Poutanen. 2017. Dropoutnet: Ad-
dressing cold start in recommender systems. Advances in neural information
processing systems 30 (2017).

[23] Siyu Wang, Xiaocong Chen, Dietmar Jannach, and Lina Yao. 2023. Causal Deci-
sion Transformer for Recommender Systems via Offline Reinforcement Learning.
In Proceedings of the 46th International ACM SIGIR Conference on Research and
Development in Information Retrieval (<conf-loc>, <city>Taipei</city>, <coun-
try>Taiwan</country>, </conf-loc>) (SIGIR ’23). Association for Computing
Machinery, New York, NY, USA, 1599–1608. https://doi.org/10.1145/3539618.
3591648

https://doi.org/10.1145/1571941.1572033
https://doi.org/10.1145/1571941.1572033
https://doi.org/10.1145/3041760
https://proceedings.neurips.cc/paper_files/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf
https://doi.org/10.1142/9789813275355_0008
https://doi.org/10.1016/j.cosrev.2016.05.002
https://doi.org/10.1145/1935826.1935910
https://proceedings.neurips.cc/paper_files/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf
https://doi.org/10.1145/1540276.1540302
https://doi.org/10.1145/1540276.1540302
https://doi.org/10.1145/3108148
https://doi.org/10.1145/3539618.3591648
https://doi.org/10.1145/3539618.3591648

OARS 2024, October 25, 2024, Boise, ID, USA Dilina Chandika Rajapakse and Douglas Leith

[24] Xin Xin, Alexandros Karatzoglou, Ioannis Arapakis, and Joemon M. Jose. 2020.
Self-Supervised Reinforcement Learning for Recommender Systems. In Proceed-
ings of the 43rd International ACM SIGIR Conference on Research and Development
in Information Retrieval (Virtual Event, China) (SIGIR ’20). Association for Com-
putingMachinery, New York, NY, USA, 931–940. https://doi.org/10.1145/3397271.
3401147

[25] Xin Xin, Tiago Pimentel, Alexandros Karatzoglou, Pengjie Ren, Konstantina
Christakopoulou, and Zhaochun Ren. 2022. Rethinking reinforcement learning for
recommendation: A prompt perspective. In Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
1347–1357.

[26] Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum,
and Chuang Gan. 2022. Prompting decision transformer for few-shot policy

generalization. In international conference on machine learning. PMLR, 24631–
24645.

[27] Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. 2023. Q-learning
decision transformer: Leveraging dynamic programming for conditional sequence
modelling in offline rl. In International Conference on Machine Learning. PMLR,
38989–39007.

[28] Kesen Zhao, Lixin Zou, Xiangyu Zhao, Maolin Wang, and Dawei Yin. 2023. User
Retention-oriented Recommendation with Decision Transformer. In Proceedings
of the ACM Web Conference 2023. 1141–1149.

[29] Ke Zhou, Shuang-Hong Yang, and Hongyuan Zha. 2011. Functional Matrix
Factorizations for Cold-Start Recommendation. In Proc SIGIR. 315â324. https:
//doi.org/10.1145/2009916.2009961

https://doi.org/10.1145/3397271.3401147
https://doi.org/10.1145/3397271.3401147
https://doi.org/10.1145/2009916.2009961
https://doi.org/10.1145/2009916.2009961

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Problem Formulation
	3.2 State Estimation
	3.3 Decision Transformer
	3.4 Prompt-based Reinforcement Learning
	3.5 MLP Value Network

	4 Measured Performance
	4.1 Experimental Setup
	4.2 MLP Outperforms Other Methods
	4.3 Computational Cost

	5 Conclusion
	References

