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ABSTRACT

In our study, we look at the application of (1) two offline Reinforce-
ment Learning based recommenders (Decision Transformer and
Prompt-based Reinforcement Learning PRL) and (2) a much simpler
Neural Network based Value Network (MLP). We evaluate their
performance in cold start conditions, where a user’s preferences
are not fully known, making recommendations challenging with
uncertain ’states’. We show that in our experiments, the simple
MLP value network outperforms both the Decision Transformer
and PRL as well as Monte-Carlo Tree Search, the latter having
previously shown state of the art performance in user-cold start
recommendation. We also benchmark the performance of the MLP
and transformer-based approaches under various conditions. We
speculate that the ’state’ estimation plays a key role in Reinforce-
ment Learning based Recommendation Systems. With a good state
estimation technique, even a basic Neural Network can be em-
ployed for effective recommendations, while requiring minimal
computational power.
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1 INTRODUCTION

Personalisation, where the system caters to each user’s individ-
ual preferences, is a key aspect of recommender systems. This is
perhaps most conspicuously seen in user-cold start, where a rec-
ommender needs to quickly learn about a new user’s preferences.
To assist with this most systems leverage information about the
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existing users. One such approach is to cluster users into groups
based on existing user data and then to select the items that a new
user is asked to rate so as to quickly learn which group the new
user belongs to.

Recent work [15, 16, 19] has shown how bandits and Monte
Carlo Tree Search (MCTS) can be used to tackle this cold start task.
MCTS treats the cold start task as a single-player game and aims to
maximise a reward, e.g. the probability that the user is assigned to
the correct group and/or the sum of the user’s item ratings. MCTS
maintains a user state that corresponds to the probability that the
user belongs to each of the possible user groups and carries out a
lookahead search for the next item to recommend. When run for
sufficiently many steps it is guaranteed to find an optimal solution
but a major practical limitation of MCTS is the computational cost
of the exploratory search step, which increases exponentially with
the size of the set of possible actions. Recently, it has been shown
that this search step can sometimes be replaced by a transformer
neural network trained in a supervised manner e.g. [18] show this
for chess play.

In a parallel line of work, there has been a growing interest
in using Reinforcement Learning (RL) for Recommender Systems,
including transformer-based methods [23, 28]. This work has mostly
been focused on generating item sequences given a history of user
(item, rating, state) triplets. During cold start only a short history
is available ( or even none at all). In the literature the state is
either assumed to be directly observed or is estimated in an ad
hoc manner, although [10, 25] observe that state-estimation can
have a substantial impact on recommender performance.

A common feature of these MCTS and RL approaches is that
they effectively take the state as a given and mainly focus effort
on the mapping from (item, rating, state) triples to the next item
recommendation. In this paper we refocus attention on the state
estimation aspect of these approaches. We examine cold start as the
user’s state is quickly evolving, providing a challenging test of state
estimation. Our experimental results show that, given the state of a
user, even a simple model such as an MLP achieves competitive rec-
ommendation performance. There no need for the computationally
expensive search step in MCTS and there is no need to use complex
deep learning neural nets in RL. Our results therefore suggest that
we should place much more emphasis on finding good ways of
estimating the state in MCTS and RL for recommenders, while time
spent on developing complex models and reward policies may yield
only limited benefits.

2 RELATED WORK

For a relatively recent survey of solutions to user cold-start see
[6, 7]. Passive approaches include recommending popular items,
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use of item-based recommendation, transfer learning from another
recommender system previously used by a user, and asking new
users to rate a fixed list of items. Examples of early work on active
learning include information gain through clustered neighbors
(IGCN) which uses a decision tree with user clusters as leaves [17]
and the decision-tree approach of [8]. More recently, the group-
based approach of [2] is extended to use a decision-tree approach
by [20]. In [29] a matrix factorization approach is proposed whereby
a decision-tree is trained to map from item ratings to the latent
feature vector for a user. Seep learning methods for cold start are
considered by [13, 22]. Recently, in [15, 16] Monte Carlo Tree Search
(MCTS) is shown to achieve state of the art performance for user
cold start.

Reinforcement learning techniques has shown promising results
in sequential and long-term recommendations, see [1] for a sur-
vey of RL in RS. Value-based methods such as Deep Q-Networks
make use of deep learning models to predicts the Q-values of all
actions given the current state, or Q-value of a given state-action
pair. Following the introduction of the transformer architecture
in [21] for text processing, there has been interest in the applica-
tions of transformer neural networks in non-text domains. The
Trajectory Transformer [11] and Decision Transformer (DT) [4]
are perhaps the first papers to apply transformers to reinforce-
ment learning but there is now a quickly growing literature on
transformer-based RL, e.g. see [14, 26, 27]. In the context of recom-
mender systems, CDT4Rec [23] and DT4Rec [28] have very recently
proposed transformer-based RL methods. Similarly, [25] adopts the
prompt based style in Decision Transformers, by formulating the
offline RL task in a supervised manner.

RL based recommenders such as in [23-25], have shown to sur-
pass non-RL methods like GRU4Rec[9], SASRec[12], in sequential
and session-based recommendation tasks. However it can be argued
that these next-item-prediction evaluations conducted in offline set-
tings may not optimally test the explore-exploit capabilities of the
RL recommenders [5]. Additionally, there is very limited literature
on RL in cold-start recommendation.

3 PRELIMINARIES
3.1 Problem Formulation

Item recommendation is a Reinforcement Learning task where the
RL agent (the recommender) interacts with the environment (the
user) by taking actions (recommending items) and observing the
reward (feedback from the users). The RL task is as follows: given
a sequence of (state, item, rating) triplets {(s;, v;,7;),i = 0,...,t}
predict the next item vs41 to display so as to maximise the sum-
rating Ry = ZLO ri. The state is an information state that embodies
user preferences and context. In the general RL literature the state is
usually assumed to be directly observed, while in the recommender
RL literature it is more commonly estimated e.g. using an LSTM.

3.2 State Estimation

In order to focus on the RL aspect of cold start recommendation,
we construct our experiments so that the ground truth user state is
known. There is a set G of user groups, each user belonging to one
group g € G. For users belonging to group g the rating R(v) of item v
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is i.i.d. gaussian with mean p(g, v) and variance 62 (g, v). If asked re-
peatedly to rate the same item then the user responds with the same
rating. Denoting the user’s group by random variable G, we have
that p(R(v) = r|G = g) = (1/V2r0(g, v))e~ T=H(9:0))*/20°(9.0) e
let p_,gt
user has rated items V(*) = {v1,...,0:}. Initially, for a new user

t = 0,9 is the empty set and the probabilities p;t)

tialised to the uniform distribution pgo) = 1/|G|. The state of a user

is the vector of group probabilities P(*) = (pft),pét), e ,pl(é)‘).

) be the probability that the user belongs to group g given the

,g € G are ini-

Incorporating trainable state-encoders, such as GRUs or CNNs,
can be commonly seen in RL literature. These need to be trained
concurrently with the RL-models. As a result of this, the state gen-
erated by the encoders will differ across models since the learned
weights are specific to each training instance. We considered our
group-membership based state to be a good state estimate to con-
duct our experiments in a controlled and reproducible manner.

3.3 Decision Transformer

(t-1) (t)
pred a’pred

Transformer Blocks LR

embedding
layers
5 it v

Sio1 P v

Action decoder

Figure 1: Decision Transformer Architecture

The Decision Transformer (DT) [4] uses a transformer neural
net for Reinforcement Learning, see Figure 1. To generate the ¢’th
item recommendation the input consists of a sequence of past (state,
reward, item) triplets (s;, rj,v;) fori = 0,...,t — 1plus (s, ) where
7t is the target rating for the next item (for a recommender we
use the highest possible item rating). The Decision Transformer
outputs a probability distribution over the set of items. We select
the item with highest probability not yet rated by the user as the
recommendation.

3.3.1 Input Embedding. The inputs {(s;,rj,v;,),i = 0,...,t} are
passed through an embedding layer, which maps the inputs into a
sequence of high-dimensional token embeddings with a size d =
128. To embed the temporal information of the inputs, positional
encodings are added to the corresponding input embeddings, before
being fed into the transformer blocks.

3.3.2 Transformer Block. The input token embeddings are fed to
a stack of N transformer blocks, which consist of multi-head self
attention layers. A causal attention mask ensures that only the prior
inputs are attended. We use 2 transformer blocks (N = 2) with 4
heads (h = 4) in each attention layer.

3.3.3 Action Decoder. The output from the transformer blocks is
passed through an action decoder, which consist of a linear layer,
followed by a softmax activation.
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Figure 2: PRL recommender Architecture

3.3.4 Loss and Training. The training data consists of sequences of
(item,rating) pairs for a population of users. The items are selected
randomly. We use the cross entropy loss between the decision
transformer prediction and the item v; in the training data.

3.4 Prompt-based Reinforcement Learning

Prompt-based Reinforcement Learning [25] (PRL) is an offline-RL
approach specifically designed for recommender systems. Similarly
to the Decision Transformer, the input is a history of (reward, item)
pairs together with the target reward for the next item. The output
is a probability distribution over the set of items and we select
the item with highest probability not yet rated by the user as the
recommendation. The architecture is shown schematically in Figure
2.

PRL is trained in a supervised manner, similarly to the Decision
Transformer. For each offline collected sequence of (item,reward)
pairs with length t, a prompt is generated which includes the cur-
rent state, reward and the timestep. In [25] the current state s; is
calculated using the past history of item interactions (v;, r;) for
i=0,...,t—1using a variety of sequential models but here we use
the state estimation method mentioned in Section 3.2. The state s;,
reward r; and timestep ¢ are mapped to latent representations using
embedding layers. These are then passed into a self-attention block
whose output is a probability distribution over the set of items. A
cross-entropy loss is calculated between the predicted item vector

pre

¢ d against the observed item v; in the training data.

During inference, the input prompt is generated using an ex-
pected reward R;, along with the state s; at timestep t. In our
experiments, R; was set to the highest possible item reward.

a

3.5 MLP Value Network

As a simpler alternative we also consider the MLP recommender
shown in Figure 3.

MLP

—> Q")

Figure 3: MLP Value Network Architecture
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The input is a (state, item) pair (s?, ). The output is the predicted
rating for item v. We select the item with highest rating not yet
rated by the user as the recommendation.

3.5.1 Input Embedding. The state s’ and item v inputs are mapped
to d dimensional vectors via an embedding layer. We use an em-
bedding size of d = 128.

3.5.2  Value Estimator. The input embeddings are passed through
an MLP with one hidden layer having the number of neurons equal
to the embedding size. The output is the predicted reward for the
input item.

3.5.3 Loss and Training. The training data used is the same as
that for the Decision Transformer. We use mean square error loss
between the predicted rating and the item rating in the training
sequence.

4 MEASURED PERFORMANCE
4.1 Experimental Setup

4.1.1  Simulation Environment. To allow us to evaluate the perfor-
mance in a clean, reproducible manner we use a simulation envi-
ronment that allows us to generate users with known ground-truth
item-ratings. Similarly to [15, 16, 19], each simulation environment
is derived from a measurement dataset consisting of (user, item,
ratings) triples. We use three public datasets Netflix!, Goodreads?
and Movielens10M? . For each dataset we cluster users into groups
(we use the BLC matrix-factorization clustering algorithm [3] for
this, although other clustering algorithms (such as k-means) might
also be used) and estimate the mean p(g, v) and variance o(g,v)?
of the ratings by each group g for item v. For each user belonging
to group g, we generate the rating for an item v by making a single
draw from the multivariate Gaussian distribution with mean u(g, v)
and variance o(g,v)2.

This environment enables the generation of sparse user-rating
data for training, allowing us to immitate a recommender system
dataset. For each user in a group g € G, we randomly sample
between 10 and 200 items. Although item sampling based on pop-
ularity (i.e., the number of interactions) is an option, we choose
to sample items uniformly to reduce potential biases within the
training data as far as possible. For evaluation, we generate user
item-ratings for 250 test users from each user group.

It is also possible to allow the RL agent to interact with the
simulation environment and follow an on-policy learning strategy,
commonly employed in RL applications. However this approach is
often impractical in the context of recommender systems.

4.1.2  Metrics. Mean rating across iterations ﬁ@,: The mean item
rating is Rg; = % 24 ri where r; is the rating of the i’th item
presented to a user. This corresponds to the sum-rating utility that
we would like to maximise in the RL setup, and so is our primacy
performance measure.

Uhttps://www.kaggle.com/datasets/netflix-inc/netflix- prize- data
Zhttps://mengtingwan.github.io/data/goodreads
3https://grouplens.org/datasets/movielens/
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4.1.3 Baselines. We evaluate the cold-start performance of the
Decision Transformer (DT), Prompt-based RL recommender (PRL)
and the MLP Value network against two baselines:

(1) Monte Carlo Tree Search (MCTS): This is a strong baseline that
represents state of the art user cold start performance. We use a
variant of the MCTS[16] recommender, that takes an RL approach
to not only focus on learning the user-groups, but also maximising
a sum rating reward.

(2) Random-Uniform (R-U): This presents items selected uniformly
at random from the items not yet viewed by the user. This random
baseline represents the population of training data, on which our
DT and MLP are trained on.

4.1.4 Hardware and Software. The training and evaluations were
conducted on a machine with a 32-core AMD Ryzen CPU and 2
x NVIDIA GeForce RTX 4090 GPUs. Our implementation* also
includes the recommendation environment and the datasets.

*https://github.com/dilina-r/rl_estimator

iterations

5 10 15 20 25
R-U 3.231 3.219 3.214 3.211 3.213
MCTS | 3.837 3.968 4.019 4.050 4.069
Netflix 8 PRL 4546 4.475 4430 4.409 4.387
DT 4.559 4487 4.445 4.422 4.407
MLP 4.566 4.498 4.463 4.434 4.417
R-U 3.535 3.542 3.546 3.545 3.543
MCTS | 3.839 3.882 3.866 3.858 3.854
Goodreads 8 PRL 4140 4.148 4.130 4.103 4.082
DT 4.260 4.218 4.189 4.164 4.146
MLP 4.268 4.237 4.204 4.173 4.149
R-U 3.166 3.157 3.161 3.160 3.159
MCTS | 3.753 3.814 3.846 3.867 3.880
Movielens 8 PRL 4.096 4.083 4.082 4.068 4.062
DT 4179 4.149 4135 4119 4.109
MLP 4.181 4.152 4.138 4.122 4.106
R-U 3.319 3325 3322 3321 3321
MCTS | 3.773 3.883 3.942 3978 4.006
Netflix 16 PRL 4.465 4.404 4352 4344 4.327
DT 4.532 4437 4393 4373 4362
MLP 4.531 4.451 4.407 4.385 4.368
R-U 3.604 3.604 3.606 3.609 3.609
MCTS | 3.815 3.855 3.877 3.886 3.893
Goodreads 16 | PRL 4189 4.120 4.087 4.051 4.013
DT 4.241 4188 4.148 4.121 4.104
MLP 4240 4.194 4.149 4.118 4.091
R-U 3360 3.360 3.369 3368 3.367
MCTS | 3.849 3.893 3920 3.940 3.950
Movielens 16 | PRL 4.153 4.089 4.046 4.027 4.017
DT 4191 4.172 4.166 4.162 4.154
MLP 4.194 4168 4.148 4.134 4.121
Table 1: Mean ratings across t recommendations (l_'(’@t) with
Random-uniform (R-U), MCTS, PRL, Decision Transformer
(DT) and Value Network (MLP) for Netflix, Goodreads, Movie-
lens10M datasets with 8 and 16 groups

dataset algo

Dilina Chandika Rajapakse and Douglas Leith

4.2 MLP Outperforms Other Methods

When a new user joins the system, the system initially presents an
item to the user and in turn the user provides a feedback (i.e: rating).
The system then continues to present the user with items, while
learning from the feedback to the previously recommended items.
To evaluate the cold-start performance, we generate new users
belonging to each group g € G, from the simulation environment.

Table 1 shows the mean reward for between 5 and 25 item recom-
mendations measured for the Netflix, Goodreads and Movielens10M
datasets with 8 and 16 groups. The highest values are indicated in
bold. Note that this is a fair comparison in the sense that all of the
approaches have access to the same user data, including the same
state estimate.

Surprisingly, at least to the authors, it can be seen that the MLP
value network consistently achieves the better performance com-
pared to PRL and MCTS. The Decision Transformer and MLP are
on par, each showing superior performance under different datasets
and conditions. This is despite the fact that the MLP is considerably
simpler than the Decision Transformer and PRL architectures. The
MLP is also much simpler than the MCTS approach which requires
an expensive exploratory lookahead search for the best item.

This has significant implications. In particular, it means that
there is little value to be gained by adding complexity to the RL
component of DT, PRL and MCTS recommenders. Indeed in our
experience adding extra complexity may lead to a loss in perfor-
mance. For the DT this loss in performance is presumably due to
the greater difficulty of training, while for MCTS the high compu-
tational burden means that the exploration needs to be curtailed
which can degrade performance.

By design, the state is explicitly known in these tests so as to
avoid confounding effects associated with state estimation. We
leave evaluation of the impact of state estimation errors to future
work, but note that our results suggest that the primary effort in
RL recommenders should be devoted to designing good state esti-
mators. In contrast, most of the current recommender RL literature
focuses on designing the mapping from (state, reward, item) triplets
to the next item, which of course is also the main focus of the RL
literature generally.

It is also worth noting that the Decision Transformer not only
receives a state input at each step, but also receives the (item,reward)
pairs of the user’s past interactions. The history of past (item,reward)
pairs is enough to allow the state to be calculated.

4.3 Computational Cost

In addition to achieving strong recommendation performance, the
MLP value network is also cheaper computationally than the Deci-
sion Transformer and PRL. This can be seen from Table 2 which
shows the measured compute time of the MLP, DT and PRL for the
Netflix dataset as the size of the set of items available to be recom-
mended is varied. The compute time shown is the average time to
recommend 25 items to a user, including the state-estimation and
model prediction times. Also shown in Table 2 is the GPU memory
used by each approach during the evaluations.

This is perhaps unsurprising given the simplicity of the MLP, but
recall that the MLP outputs the predicted rating for a single item
and so to predict the next item to recommend it needs to be run for
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dataset | #items no. of parameters avg time/25 recs (ms) | allocated GPU mem (MB) §@25
MLP DT PRL MLP DT PRL MLP DT PRL MLP DT PRL
Netflix-S 752 34,689 546,672 227,312 8.92 43.89 14.67 8.63 11.48 8.99 4.417 4407 4.387
Netflix-M | 4,804 | 34,689 1,069,380 750,020 11.60 43.01 14.86 | 10.60 16.62 10.99 4374 4.380 4.326
Netflix-L | 15,020 | 34,689 2,387,244 2,067,884 | 15.92 43.52 15.20 | 15.59 29.55 16.01 4358 4.361 4.298

Table 2: Average recommendation time per user, model parameter count, GPU memory usage, Mean reward E@gs for the Value
Network (MLP) and Decision Transformer (DT), with varying available number of items - Netflix 8 groups dataset

every item not yet rated by the user. Thus the computational cost of
the MLP increases linearly with the number of items, although this
might be compensated by implementing batch-predictions. The
Decision Transformer and PRL both output a probability vector
over the set of possible items, which scales with the number of
items. However, it can be seen from Table 2 that the compute time
for DT and PRL increases slightly with the number of items and so
the compute burden is dominated by other components of these
networks.

MCTS data is not included in Table 2 because we found that the
computational burden quickly becomes too high as the number of
available items is increased it grows exponentially in the number
of items). We also note that MCTS is not well suited to GPU imple-
mentation and so is difficult to benchmark fairly against the MLP
and DT approaches which use a GPU.

The last column of Table 2 also summarises how the recommen-
dation performance varies with the number of available items. It
can be seen that the performance tends to fall as the number of
items is increased, presumably reflecting the increased difficulty
of finding the best item to recommend when the pool of available
items is larger. However, it can also be seen that the decrease in
performance is much more pronounced for PRL compared to the
MLP and DT.

5 CONCLUSION

Our results suggest that there is little value to be gained by adding
complexity to the RL component of DT, PRL and MCTS recom-
menders. Indeed the extra complexity may lead to a loss in perfor-
mance. Rather the primary effort in RL recommenders should be
devoted to designing good state estimators.
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