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ABSTRACT
Rogue actors employ sophisticated automation techniques to mimic

human browsing/click patterns and generate invalid (i.e., fraudu-

lent or robotic) traffic on retail marketplaces to artificially inflate

their key performance metrics at the expense of their legitimate

competitors. To maintain a clean and fair advertising system, it is

essential to identify and mitigate ad traffic that is invalid, i.e., fraud-

ulent or coerced or unintended, driven by bad actors and ensure

that advertisers do not get charged for invalid traffic (IVT). One

major challenge for advertising systems is the absence of complete

ground truth fraud labels, even in limited amounts, which makes

it challenging to build one single overarching model for compre-

hensive IVT detection. This generally results in a suite of models,

each trying to identify some specific bot modus operandi. While

this approach has been beneficial to offer more robust protection

to advertisers by catching a variety of bots, it also piled up poten-

tially millions of dollars of lost revenue opportunities, with each

algorithm contributing incrementally to false positive detection

(i.e., incorrect removal of valid traffic). Hence, we propose to build

a “model over models” that learns to maintain true IVT coverage

of ad fraud detection system while simultaneously lowering the

cost of false positives. In this paper, we present a few variations for

the new system, trained with incomplete labels that are either high

quality but delayed in availability or low quality but available faster.

Our proposed online algorithm combines the best of both worlds.

It continuously adapts to not only reduce false positive cost by a

massive 37% (owing to strong delayed labels), but also to rapidly

mitigate revenue loss spikes (owing to weak fast labels) associated

with occasional IVT detection system failure scenarios. To this end,

we show that the online algorithm has sub-linear regret.
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1 INTRODUCTION
Sponsored Ads aka Sponsored Search aka Promoted Listings refer

to performance advertising programs that enable advertisers to in-

crease their product visibility and sales on popular e-commerce sites

like eBay, Walmart, Flipkart, Amazon, Alibaba, etc. Because of the

enormous revenue opportunity, Sponsored advertising is targeted

by fraudsters to fulfil their pernicious motives like artificially in-

flating own earnings, depleting competitor budget, boosting search

rankings, etc. Bad actors try to achieve these objectives by sending

automated ad traffic to click on ads on sponsored advertising pages

while mimicking human browsing behavior as much as possible.

Invalid traffic (IVT) is defined as ad traffic that is either fraudulent

or involuntary or non-human, and has no value to the advertiser.

The role of Traffic Quality (TQ) is to detect and mitigate IVT, so that

advertisers are charged only for traffic that is deemed to be valid by

a highly precise and high coverage detection system. The goal of

such a system is to maintain advertiser trust with comprehensive

IVT discovery, and to simultaneously have minimal impact on the

online marketplace revenue from incorrect invalidation.

Over time, invalid traffic creators have grown in the sophisti-

cation of fraud modus operandi. Continual explosion in the scale

of IVT, variety of attack vectors and discovery of adversarial at-

tack patterns prompted TQ to steadily respond to the IVT threat

by building new algorithms. One major challenge for TQ in this

business application is the absence of complete ground truth labels,

even in limited amounts, to train complex models with supervision

and to measure the true efficacy of any component algorithm. The

dearth of labels has been a key inhibitor for TQ to build a single,

overarching model for comprehensive IVT detection, since we are

1
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unable to optimize any model training objective to cover for the

“unknown and undetected" attack vectors. Hence, over the years,

TQ developed a large number of algorithms–heuristic algorithms,

machine learning models, deep neural networks, Javascript based

client-side telemetry and security engineering based Forensics tech-

niques. All these algorithms were built from a customer-backwards

approach with a goal to mitigate every known instance of fraud

modus operandi and to protect genuine advertiser interests.

Presently, the full suite of TQ invalid detection algorithms com-

prise of a large variety–some models detect IVT at the granularity

of an ad click or impression [8], while other models generate lists

of robotic (invalid) entities driving the IVT, like bot user accounts,

devices, User Agents and IPs [1]. There is another important angle

of variation among the several TQ system algorithms; some algo-

rithms publish invalidation decisions in real-time (<5 milliseconds

latency), while many others publish decisions offline ranging from

several hours to several days of delay. Whenever any one TQ algo-

rithm marks an ad event (click/impression) as invalid, the event is

invalidated and dropped from advertiser budgeting and billing to

err on the side of caution. Following the mushrooming of produc-

tion algorithms for IVT detection, it is hard for TQ to continuously

administer all underlying algorithms for optimal performance in

the light of the perennially evolving valid and invalid ad traffic pat-

terns. Moreover, each new algorithm deployed in production adds

to the detection system’s false positive rate (FPR) and revenue loss

due to incorrect advertiser charge-back of human ad traffic. These

FPR costs, however small in magnitude for one single algorithm,

when aggregated over the entire TQ system, bloat up the size of

lost revenue opportunity on the sponsored ads programs.

1.1 Need to rectify system decisions
As a consequence of the recurring addition of independent algo-

rithms with so many varied flavors, TQ system has reached a point

of diminishing returns with respect to the older generation algo-

rithms. Many TQ algorithms have become less effective incremen-

tally, given that newer generation models are more powerful and

can often replicate the majority of detection by the more primi-

tive algorithm. However, it is rarely the situation that any of the

legacy algorithms have become entirely (or near 100%) redundant

in regards to novel IVT pattern discovery. Deprecating any such

legacy algorithm would evidently take a positive step toward lost

revenue recovery, but this action will be in direct conflict with the

TQ tenet to place advertiser customer interests first. As a solution

to this significant missed revenue opportunity, we are proposing

a single machine learning (ML) system that combines decisions

from component TQ algorithms and predicts whether or not to

invalidate the ad traffic event. Obviously, the simplest “model” to

increase confidence (i.e., decrease FPR) in marked invalids is the

naïve voting mechanism to invalidate an event only if 𝑛(>= 2) al-
gorithms have concurred the event as invalid. However, this simple

rule drastically worsens the IVT capture rate, making it infeasible

to apply in production without the risk of increasing advertiser

exposure to IVT.

Current TQ system invalidates an ad event even if a single al-

gorithm flags it as invalid, since greater importance is placed on

advertiser protection from IVT than recouping lost revenue due

to invalidation FPR. In this paper, we present a modeling frame-

work that functions as a “model over models" (model over binary

model decisions to be more precise) to shift to a more well-informed

process in making the correct ad click and impression validation

decisions. This framework (aka decision layer) has the sole aim to

reduce overall system FPR, given a strict constraint that true IVT
detection rate should not drop significantly. We describe further

some of the unique and additional burden of challenges accompa-

nying the overall FPR reduction objective. As desired, our decision

layer system needs to adapt quickly and dynamically to incoming

traffic and IVT trends. Algorithms occasionally misbehave due to

any one (or more) among an abundance of known issues like up-

stream data corruption, faulty deployments, traffic shift due to sale

events, bad model configuration etc. During these instances of a

large scale TQ system failure where a single or a few algorithms

go rogue, the decision layer is required to mitigate the resulting

abnormal FPR spikes within a short time period. In order to train

the decision layer model to rectify wrong TQ decisions, we wish to

train a supervised model with strong human indicators (incomplete

labels covering a very small but confident subset of human/good

traffic). However, our best choice of confident human labels are

available with a long delay (2 days), which is too slow to react to

sudden spikes in FPR cost during a system failure scenario. To solve

this problem, we propose an online algorithm in this paper that

learns from delayed strong labels (to achieve high precision) and

also updates model parameters using much faster but weak labels.

These weak labels are less precise but directionally accurate to

capture the ongoing trend. Our proposed algorithm combines three

ideas from the literature, viz., ensemble learning, online convex

optimization and mitigation of the effect of label noise induced by

the weak labels and demonstrates that it can drastically reduce the

FPR in both normal and system failure scenarios without materially

deteriorating true IVT detection.

Section 2 discusses previous work on key ideas used in the paper.

The algorithm and some of its properties are presented in Section

3, followed by performance comparison of the algorithm against

other baselines in Section 4. Finally, we conclude and discuss future

directions in Section 5.

2 RELATEDWORK
This paper incorporates three key ingredients, viz., ensemble learn-

ing, online convex optimization and mitigation of the effect of label

noise. We review prior work on these ideas in this section.

Ensemble models can be broadly categorized into decision fusion

strategies, bagging, boosting and stacking. Fusion strategies, such

as unweighted model averaging and majority voting work well

when the expert algorithms are comparable [15, 28, 31]. However,

these strategies lead to sub-optimal performance as they are biased

learners [17]. Stacking, often referred to asmodel blending, is a meta-

learning technique to consolidate the output of expert algorithms

[32]. Unlike bagging [6], in stacking the models are different (e.g.

not all decision trees) and fit on the same data set instead of on

random samples of the training data set. Likewise, unlike boosting

[10, 11], in stacking a single model learns how to best combine

the predictions from contributing models, instead of a sequence of

models that correct prior model predictions. As our interest is in

2
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simply combining the expert algorithms, stacking is a natural fit

for our setting. A detailed study on recent advances in ensemble

methods can be found in [9, 12, 24, 33].

Online convex programming was introduced first by Zinkevich

[35] and the worst case regret analysis was first proposed by Gor-

don [13]. Kalai and Vempala [19] proposed the “Follow the Leader”

approach and showed that it leads to doing nearly as well as the

best single decision in hindsight. Logarithmic regret algorithms

for online convex optimization were first introduced and analysed

in Hazan [14]. It was the seminal paper by Shalev-Shwartz and

Singer [26] that put forth the primal-dual perspective of the online

learning algorithm and introduced a general framework for the

design and analysis of online algorithms.

It is well-known that deep neural networks when trained with

noisy labels results in poor generalizability [3, 20, 34]. Unfortu-

nately, popular regularization techniques, such as data augmen-

tation [27], Dropout [30], Batch Normalization [16] and weight

decay [21] cannot overcome this overfitting problem. Song et al.

[29] provided a detailed survey on learning from noisy labels, where

the methods are categorized into five buckets: Robust architecture,

robust loss function, loss adjustment, sample selection and robust

regularization. Menon et al. [23] proposed one such robust regular-

ization technique in which a variant of standard gradient clipping

reduces the label noise, which is one of the crucial components of

our algorithm.

3 ALGORITHM OVERVIEW
In this section we briefly describe the Online Convex Optimization

(OCO) setting, and subsequently propose our algorithm, Online

clipped gradient descent using weak and strong labels.

3.1 Online convex optimization
Online Convex Optimization (OCO) can be thought of as a two

player game between an adversary and a learner. Let 𝑇 denote the

total number of game iterations. At each iteration 𝑡 ∈ {1, . . . ,𝑇 }, the
learner chooses a point𝑤𝑡 from a convex set K . After the learner

commits to this choice, a convex loss function, 𝑙𝑡 ∈ L : K → R is

revealed, where L is the space of loss function and R is the real

line.

LetA be an algorithm for OCO, that maps the history up to time

𝑡 to decide the decision point:

𝑤A
𝑡 = A(𝑙1, 𝑙2, . . . , 𝑙𝑡−1) ∈ K .

The adversary enjoys an undue advantage of choosing an arbi-

trary set of loss functions {𝑙𝑡 }𝑇𝑡=1. However, the best algorithm is

defined as choosing the best point in hindsight,𝑤 ∈ K , fixed across

all iterations [13]. Hence, we define the regret of algorithm A after

𝑇 iterations as:

𝑅𝑒𝑔𝑟𝑒𝑡A (𝑇 ) = sup

{𝑙1,...,𝑙𝑡 }⊆L

{ 𝑇∑︁
𝑡=1

𝑙𝑡 (𝑤A
𝑡 ) − min

𝑤∈K

𝑇∑︁
𝑡=1

𝑙𝑡 (𝑤)
}

3.2 Online clipped gradient descent using weak
and strong labels

Online marketplaces log a host of critical and non-critical features
associated with every ad click. Non-critical features include device

type, page type, logged-in/non-logged-in status, customer member-

ship status (Amazon Prime, Flipkart Plus) etc. Critical features are
defined as the expert algorithm decisions on a binary scale. Next,

we provide a primer on the labeling strategy for model training.

We selected two candidate signals for the target variable. First, we

use the retail orders on the marketplace to construct a binary label,

wherein a session that placed the order and all its clicks in the cor-

responding order hour are marked as human. This data is generally

available in near-real time. However, an order is not always an

indisputable indicator of a human session, since the order can get

canceled later on due to non-payment, could have been placed by

the human part of a compromised account, etc. Henceforth, we refer

to this low confidence human label as the noisy or weak label. The

second labeling option is related to ad-attributed purchases, where

the purchased product from the marketplace match the product

category, brand etc. of the clicked ad. This signal is clearly more

reliable but is available with a delay of more than a day. We refer

to this signal as the clean or strong label hereon.
We propose a game play between the adversary and the learner,

where the learner’s action is to set the model weights at the start of

every iteration. We start by initializing weights from some offline

model. These model weights are updated twice every hour, once

using the weak labels and once using the strong labels. Thus, the

algorithm completes two game iterations every hour.

3.3 Theoretical results on regret bounds
We define ∥𝑥 ∥ =

√
𝑥 · 𝑥 and 𝐷 (𝑥,𝑦) = ∥𝑥 − 𝑦∥. All norms are 𝑙2-

norms unless specified otherwise. We define the projection 𝑃 (𝑦) =
argmin𝑥∈K 𝑑 (𝑥,𝑦). We have 𝑑𝑐 number of critical, 𝑑𝑛𝑐 number

of non-critical features and 𝑑 number of total features, thus, 𝑑 =

𝑑𝑐 + 𝑑𝑛𝑐 holds trivially. From a feature vector 𝜙 (𝑥) (resp. model

weight vector𝑤 ), we extract its critical and non-critical subvectors

as 𝜙 (𝑥)𝑐 (resp.𝑤𝑐 ) and 𝜙 (𝑥)𝑛𝑐 (resp.𝑤𝑛𝑐 ).

For the target variable 𝑦 ∈ {+1,−1}, the logistic loss can be

defined as𝑔(𝑤) = −𝑙𝑜𝑔(𝑢), where𝑢 = 𝜎 (𝑦·𝑤𝑇𝜙 (𝑥)), the probability
of the class corresponding to the label 𝑦. Here, 𝜎 is the sigmoid link

function. As 𝜎′ = 𝜎 (1 − 𝜎), we get ∇𝑔(𝑤) = (−1/𝑢 × 𝑢 × (1 − 𝑢) ×
𝑦) · 𝜙 (𝑥), where all quantities except the feature vector 𝜙 (𝑥) are
real numbers and 𝜙 (𝑥) ∈ R𝑑 .

As a first step towards defining the algorithm, we propose the

loss function as 𝑙𝑡 (𝑤) = ⟨𝑤, 𝑧𝑡 ⟩, which is linear in 𝑤 and hence a

convex function. We define 𝑧𝑡 for a single data point below, which

can be averaged over all points in the batch to compute 𝑧𝑡 for

a batch. When clean labels are used, we define 𝑧𝑡 � ∇𝑔𝑡 (𝑤𝑡 ) =

(1−𝑢𝑡 )𝑦𝑡 ·𝜙 (𝑥𝑡 ), i.e., the gradient of the logistic loss function at time

𝑡 , evaluated using the model weight vector at time 𝑡 . When noisy

labels are used, we define 𝑧𝑡 � Φ◦Ψ(𝑤𝑡 , 𝐾) = Φ(−((1/𝑢𝑡 ∧𝐾)×𝑢𝑡 ×
(1 − 𝑢𝑡 ) × 𝑦𝑡 ) · 𝜙 (𝑥𝑡 )), using a positive clipping constant 𝐾 . Here,
(𝑎∧𝑏) =𝑚𝑖𝑛(𝑎, 𝑏) for 𝑎, 𝑏 ∈ R and function Ψ(𝑤,𝐾) computes the

gradient of the partial Huberised loss at 𝑤𝑡 by clipping only the

first term in the gradient of the logistic loss function leaving the

remaining terms untouched as mentioned in [23]
1
. Further, map

Φ sets the vector components corresponding to the non-critical

features as zero.

1
Partial Huberised loss is not convex. We fix 𝑧𝑡 as its gradient evaluated at 𝑤𝑡 and

define a convex loss function 𝑙𝑡 , which is revealed after learner fixes the action 𝑤𝑡 .

3
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Lemma 1. For the loss function 𝑙𝑡 (𝑤) = ⟨𝑤, 𝑧𝑡 ⟩ defined on𝑤 ∈ K ,
the following hold.

(1) ∥𝑧𝑡 ∥ ≤ 𝐾
√
𝑑 for ∀𝑡 .

(2) Function 𝑙𝑡 is Lipschitz continuous with Lipschitz constant
𝐾
√
𝑑 for ∀𝑡 .

Proof. For the clean label as target, 𝑧 � ∇𝑔(𝑤) = (1−𝑢)𝑦 ·𝜙 (𝑥).
Hence, ∥𝑧∥∞ ≤ 1 as all features are binary. Using the inequality,

∥𝑧∥2 ≤
√
𝑑 ∥𝑧∥∞, we get ∥𝑧∥ ≤

√
𝑑 . For the noisy labels as the

target, 𝑧 � Φ ◦ Ψ(𝑤,𝐾), where 𝐾 is the clipping constant. Hence,

𝑧 = Φ(−((1/𝑢 ∧𝐾) ×𝑢 × (1 −𝑢) ×𝑦) · 𝜙 (𝑥)). As ∥𝑧∥∞ ≤ 𝐾 , we get

∥𝑧∥ ≤ 𝐾
√
𝑑 .

2. We observe that 𝑙𝑡 (𝑤) is differentiable for all 𝑤 ∈ K as it is

linear in 𝑤 . Note that ∇𝑙𝑡 (𝑤) = 𝑧𝑡 and ∥𝑧𝑡 ∥ ≤ 𝐾
√
𝑑 for ∀𝑡 . Also,

the 𝑙2-norm is the dual norm of itself. Thus, 𝑙𝑡 is Lipschitz with

respect to the 𝑙2-norm (the norm in the primal space) as the norm

of its gradient in the dual space (also the 𝑙2-norm) is bounded. □

As a second step towards building the algorithm, we propose a

regularizer and highlight some of its properties.

Lemma 2. For positive real numbers 𝜂𝑐 and 𝜂𝑛𝑐 , with 𝜂𝑐 > 𝜂𝑛𝑐 , we
define the regularizer, 𝑅(𝑤) � 1

2𝜂𝑐
∥𝑤𝑐 ∥2 + 1

2𝜂𝑛𝑐
∥𝑤𝑛𝑐 ∥2 for𝑤 ∈ R𝑑 ;

the following hold.
(1) R is strongly convex with parameter 1/𝜂𝑐 .
(2) R is a Legendre function.
(3) The associated Fenchel dual 𝑅∗ : {∇𝑅(𝑤) : 𝑤 ∈ R𝑑 } → R is:

𝑅∗ (𝑥) = 𝜂𝑐

2

∥𝑥𝑐 ∥2 +
𝜂𝑛𝑐

2

∥𝑥𝑛𝑐 ∥2 (1)

(4) The Bregman Divergence associated with the Legendre func-
tion R is:

𝐷𝑅 (𝑥,𝑦) =
1

2𝜂𝑐
∥𝑥𝑐 − 𝑦𝑐 ∥2 +

1

2𝜂𝑛𝑐
∥𝑥𝑛𝑐 − 𝑦𝑛𝑐 ∥2 for 𝑥,𝑦 ∈ R𝑑 (2)

(5) The Bregman Divergence associated with the Fenchel dual 𝑅∗

is:

𝐷𝑅∗ (𝑥,𝑦) = 𝜂𝑐

2

∥𝑥𝑐 − 𝑦𝑐 ∥2 +
𝜂𝑛𝑐

2

∥𝑥𝑛𝑐 − 𝑦𝑛𝑐 ∥2 for 𝑥,𝑦 ∈ R𝑑 (3)

Proof. 1. Any function f is 𝜂-strongly convex if and only if

∇2 𝑓 (𝑥) ⪰ 𝜂𝐼 for all 𝑥 ∈ dom 𝑓 [5, page 11]. Here, ∇2 𝑓 (𝑥) − 𝜂𝐼 is
positive semi-definite if all eigenvalues of ∇2 𝑓 (𝑥) be at least 𝜂 for

all 𝑥 . The hessian of R is a diagonal matrix with 1/𝜂𝑐 at positions
corresponding to the critical features and with 1/𝜂𝑛𝑐 at positions
corresponding to non-critical features. Thus, the minimum eigen-

value of the hessian of R is 1/𝜂𝑐 (as 𝜂𝑐 > 𝜂𝑛𝑐 ) and R is strongly

convex with parameter 1/𝜂𝑐 .
2. For any arbitrary sequence {𝑥𝑡 } ∈ B, with 𝑥𝑡

𝑡→∞−−−−→ 𝜕𝐵,

note that ∥∇𝑅(𝑥𝑡 )∥
𝑡→∞−−−−→ ∞ for B = R𝑑 . Also, as R is a continuous

function, its domain R𝑑 is convex, ∇𝑅 is continuous and R is strictly

convex, its a Legendre function.

3. By the definition of the Fenchel dual [4, Definition 12.1],

𝑅∗ (𝑥) = max

𝑤∈R𝑑
⟨𝑤, 𝑥⟩ − 𝑅(𝑤)

= max

𝑤𝑐 ∈R𝑑𝑐
max

𝑤𝑛𝑐 ∈R𝑑𝑛𝑐
𝑤𝑇
𝑐 𝑥𝑐 −

1

2𝜂𝑐
𝑤𝑇
𝑐 𝑤𝑐

+ 𝑤𝑇
𝑛𝑐𝑥𝑛𝑐 −

1

2𝜂𝑛𝑐
𝑤𝑇
𝑛𝑐𝑤𝑛𝑐

The equation achieves its maximum at𝑤𝑐 = 𝜂𝑐𝑥𝑐 and𝑤𝑛𝑐 = 𝜂𝑛𝑐𝑥𝑛𝑐 .

By substituting them back, we get the desired result.

4. By the definition of Bregman Divergence [4, Definition 8.2],

𝐷𝑅 (𝑥,𝑦) = 𝑅(𝑥) − 𝑅(𝑦) − ∇𝑅(𝑦)𝑇 (𝑥 − 𝑦)

=
1

2𝜂𝑐
𝑥𝑇𝑐 𝑥𝑐 +

1

2𝜂𝑛𝑐
𝑥𝑇𝑛𝑐𝑥𝑛𝑐 −

1

2𝜂𝑐
𝑦𝑇𝑐 𝑦𝑐 −

1

2𝜂𝑛𝑐
𝑦𝑇𝑛𝑐𝑦𝑛𝑐

− 𝑥𝑇𝑐 𝑦𝑐

𝜂𝑐
+ 𝑦

𝑇
𝑐 𝑦𝑐

𝜂𝑐
− 𝑥𝑇𝑛𝑐𝑦𝑛𝑐

𝜂𝑛𝑐
+ 𝑦

𝑇
𝑛𝑐𝑦𝑛𝑐

𝜂𝑛𝑐

=
1

2𝜂𝑐
∥𝑥𝑐 − 𝑦𝑐 ∥2 +

1

2𝜂𝑛𝑐
∥𝑥𝑛𝑐 − 𝑦𝑛𝑐 ∥2

5. Similar as above. □

Finally, we present the algorithm, Online clipped gradient de-

scent using weak and strong labels, which, at time 𝑡 , simply chooses

the action that greedily minimizes the total loss observed upto time

𝑡 by virtue of “Follow the Regularized Leader” [22].

Lemma 3. Starting with arbitrary𝑤0, iterates at any time 𝑡 > 0

for the algorithm are driven by the recursive equation

𝑤𝑡 = 𝑃 (∇𝑅∗ (∇𝑅(𝑤𝑡−1) − 𝑧𝑡−1)) .

Proof. As the algorithm greedily minimizes the total observed

loss so far,

𝑤𝑡 � argmin

𝑤∈K

𝑡−1∑︁
𝑠=1

𝑙𝑠 (𝑤) + 𝑅(𝑤)

= argmax

𝑤∈K

〈
−

𝑡−1∑︁
𝑠=1

𝑧𝑠 ,𝑤

〉
+ 𝑅(𝑤)

= ℎ(𝜃𝑡 )

Here, 𝜃𝑡 = −∑𝑡−1
𝑠=1 𝑧𝑠 andℎ(𝜃 ) = argmin𝑤∈K ⟨−𝜃,𝑤⟩+𝑅(𝑤). We

define𝑤𝑡 � argmin𝑤∈R𝑑 ⟨−𝜃,𝑤⟩ + 𝑅(𝑤), the unconstrained mini-

mizer of the total loss observed so far, then 𝑤𝑡 = ℎ(𝜃𝑡 ) = 𝑃 (𝑤𝑡 ),
where 𝑃 is the projection function defined as 𝑃 (𝑦) = argmin𝑥∈K
𝐷 (𝑥,𝑦) for the Bregman divergence associated with 𝑅 as the dis-

tance metric [4, Lemma 8.13]. Thus, the projection lemma suggests

to first find the unconstrained minimizer of the total loss observed

so far and then project it to the convex set K . As𝑤𝑡 is defined as

the unconstrained minimizer of a convex loss function, its gradient

evaluated at𝑤𝑡 should be zero. Hence, ∇(⟨−𝜃𝑡 ,𝑤⟩ + 𝑅(𝑤)) |𝑤𝑡
= 0.

Thus,𝑤𝑡 = (∇𝑅)−1 (𝜃𝑡 ) = ∇𝑅∗ (𝜃𝑡 ) [4, Proposition 12.3]. Hence,

𝑤𝑡 = ℎ(𝜃𝑡 ) = 𝑃 (𝑤𝑡 )
= 𝑃

(
∇𝑅∗ (𝜃𝑡 )

)
= 𝑃

(
∇𝑅∗ (𝜃𝑡−1 − 𝑧𝑡−1)

)
= 𝑃

(
∇𝑅∗ (∇𝑅(𝑤𝑡−1) − 𝑧𝑡−1)

)
This recursive equation results in a lazy version of the algorithm.

As described in Zinkevich [35], we replace𝑤𝑡−1 with𝑤𝑡−1 to get

the active version of the algorithm. The geometric interpretation

of the recursive equation is given in Figure 1. Here, the model

weights, 𝑤𝑡 , are iterates in the primal space K , whereas 𝜃𝑡 are

the iterates in the dual space R𝑑 . Note that the gradient descent
procedure takes place in the dual space. At the start of an iteration,

we project the model weights from the primal space to the dual

4
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space (𝜃𝑡−1 = ∇𝑅(𝑤𝑡−1)) and then perform the gradient descent

(𝜃𝑡 = 𝜃𝑡−1 − 𝑧𝑡−1) in the dual space. Next, the dual iterates are

transferred back to the primal space (𝑤𝑡 = ∇𝑅∗ (𝜃𝑡 )) and then

projected to the convex set K (𝑤𝑡 = 𝑃 (𝑤𝑡 )). □

Figure 1: Graphical representation of the algorithm

It is easy to see this recursive equation results in Algorithm

1 for our choice of regularizer. Notice that the learning rates for

the critical and non-critical parameter updates turn out to be the

corresponding inverses of the regularizer parameters. Next, we

state an upper bound on the regret of the algorithm in Theorem 1.

Theorem 1. For max𝑢∈K ∥𝑢∥ ≤ 𝑟 , positive clipping constant
𝐾 , and 𝑑 number of features, an upper bound on the regret of the
algorithm is:

𝑅𝑒𝑔𝑟𝑒𝑡 (𝑇 ) ≤ 4𝑟𝐾
√
𝑑𝑇 .

Proof. As per [4, Lemma 9.5], for convex loss functions, {𝑙𝑡 }𝑇𝑡=1
defined over a convex set K , and a Legendre function 𝑅 defined

over R𝑑 as the regularizer, and ∀𝑢 ∈ K ,

𝑇∑︁
𝑡=1

⟨𝑤𝑡 − 𝑢, 𝑧𝑡 ⟩ ≤ 𝐷𝑅 (𝑢,𝑤1) − 𝐷𝑅 (𝑢,𝑤𝑇+1) +
𝑇∑︁
𝑡=1

𝐷𝑅 (𝑤𝑡 ,𝑤𝑡+1) .

where 𝐷𝑅 is defined in Lemma 2. Thus, 𝑅𝑒𝑔𝑟𝑒𝑡 (𝑇 )

≤ max

𝑢∈K

(
𝐷𝑅 (𝑢,𝑤1) − 𝐷𝑅 (𝑢,𝑤𝑇+1) +

𝑇∑︁
𝑡=1

𝐷𝑅 (𝑤𝑡 ,𝑤𝑡+1)
)

≤ max

𝑢∈K

(
𝐷𝑅 (𝑢,𝑤1)+

𝑇∑︁
𝑡=1

𝐷𝑅 (𝑤𝑡 ,𝑤𝑡+1)
)

= max

𝑢∈K

(
𝐷𝑅 (𝑢,𝑤1) +

𝑇∑︁
𝑡=1

𝐷𝑅∗
(
∇𝑅(𝑤𝑡+1),∇𝑅(𝑤𝑡 )

) )
= max

𝑢∈K

(
1

2𝜂𝑐
∥𝑢𝑐 −𝑤1,𝑐 ∥2 +

1

2𝜂𝑛𝑐
∥𝑢𝑛𝑐 −𝑤1,𝑛𝑐 ∥2

+
𝑇∑︁
𝑡=1

𝜂𝑐

2

∥ − 𝑧𝑡,𝑐 ∥2 +
𝑇∑︁
𝑡=1

𝜂𝑛𝑐

2

∥ − 𝑧𝑡,𝑛𝑐 ∥2
)

≤ 2𝑟2

𝜂𝑐
+

𝑇∑︁
𝑡=1

𝜂𝑐

2

∥𝑧𝑡,𝑐 ∥2 +
2𝑟2

𝜂𝑛𝑐
+

𝑇∑︁
𝑡=1

𝜂𝑛𝑐

2

∥𝑧𝑡,𝑛𝑐 ∥2

≤ 2𝑟2

𝜂𝑐
+ 𝜂𝑐

2

𝐾2𝑑𝑇 + 2𝑟2

𝜂𝑛𝑐
+ 𝜂𝑛𝑐

2

𝐾2𝑑𝑇

≤ 4𝑟𝐾
√
𝑑𝑇

Here, 𝐷𝑅 (𝑤𝑡 ,𝑤𝑡+1) = 𝐷∗
𝑅
(∇𝑅(𝑤𝑡+1),∇𝑅(𝑤𝑡 )) [7, Lemma 5.1],

𝐷𝑅 (·, ·) ≥ 0, 𝜃𝑡+1 = 𝜃𝑡 − 𝑧𝑡 with 𝜃𝑡 = ∇𝑅(𝑤𝑡 ), ∥𝑎 − 𝑏∥ ≤ 2 ×
𝑚𝑎𝑥 (∥𝑎∥, ∥𝑏∥), max𝑢∈K ∥𝑢∥ ≤ 𝑟 , ∥𝑧𝑡 ∥ ≤ 𝐾

√
𝑑 [Lemma 1], and

used 𝜂𝑐 and 𝜂𝑛𝑐 that maximises the expression. □

Upper bound on the regret of the online mirror descent (OMD)

algorithm (for the online version of the stacking algorithm with one

game iteration each day) is 2𝑟
√
𝑑𝑇 as the gradients are bounded by√

𝑑 [18, 25]. Thus, the proposed algorithm pays the price for clipping

the gradients as well as for updating the critical and non-critical

parameters using separate learning rates. We again emphasize the

main result of the paper that the regret of the proposed algorithm

is O(
√
𝑇 ), which is the same as OMD.

4 RESULTS
4.1 Model performance metrics
We judge model performance on the basis of a few key business

metrics. These metrics include (a) a proxy measure of false positive

rate (FPR) that measures algorithm precision in catching bot traffic,

and (b) robotic recall on a highly confident set of invalid ad clicks.

We use two extremely precise robotic signals designed for general

algorithm evaluation, using highly confident rules for invalid label

assignment to a small portion of ad traffic. All ad clicks from a

session having a large number of clicks in a single hour (robot

signal 𝑅1), or from an IP with a large click count in a week and

extremely low purchase rate (robot signal 𝑅2) are invalid with

extremely high confidence. High coverage on these robot signals

provides confidence on directionally positive progress made by the

system in improving the recall of IVT detection.

To combine the expert algorithm decisions, the first step is to

train a stacking logistic regression model using the strong labels

[32]. This model is trained daily once on a period of 𝑁 (chosen

according to business objectives) consecutive days of digital ad-

vertising data from the sponsored advertising program of a major

online retailer. We also trained a stacking logistic regression model

on the same 𝑁 days of advertising data from the same ad program

using the weak labels. We compare our algorithm (referred to as

the online algorithm, which, at time 𝑡 , simply chooses the model

weights that greedily minimizes the total loss observed upto time

𝑡 ) with these baselines on metrics defined above, along with an

additional baseline, where the online algorithm is trained using

only weak labels.

We compare the results for two periods: a normal period and a

spike period where FPR of one of the expert algorithms suddenly

increased because of a faulty model promotion in production. The

results are shown in the Table 1 and Table 2 respectively. All metrics

are relative to the production system. An algorithm having higher

drop on FPR without significant drop on recall on 𝑅1 and 𝑅2 is

preferred.

As expected, the stacking model trained using weak labels show

inferior performance compared to the stacking model trained using

the strong labels on both time periods. Weak labels lead to low

FPR reduction (lower precision) and high drop on recall on robotic

signals. The online algorithm trained using only weak labels has

the highest FPR drop among all algorithms during the normal pe-

riod. Nevertheless, it has significantly less FPR decrease during
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Algorithm 1 Online Clipped Gradient Descent Using Weak and Strong Labels

1: Input: time horizon 2𝑇 , initial model weights𝑤0, learning rates {𝜂𝑐 , 𝜂𝑛𝑐 }

2: for t = 0, 2, 4,. . . , 2𝑇 − 2 do:
3: 𝑧𝑡 = ∇(𝑔𝑡 (𝑤𝑡 ))
4: 𝑤𝑡+1,𝑐 = 𝑤𝑡,𝑐 − 𝜂𝑐 × 𝑧𝑡,𝑐 ;𝑤𝑡+1,𝑛𝑐 = 𝑤𝑡,𝑛𝑐 − 𝜂𝑛𝑐 × 𝑧𝑡,𝑛𝑐
5: 𝑤𝑡+1 = 𝑃 (𝑤𝑡+1)
6: 𝑧𝑡+1 = Φ ◦ Ψ(𝑤𝑡+1, 𝐾)
7: 𝑤𝑡+2,𝑐 = 𝑤𝑡+1,𝑐 − 𝜂𝑐 × 𝑧𝑡+1,𝑐 ;𝑤𝑡+2,𝑛𝑐 = 𝑤𝑡+1,𝑛𝑐
8: 𝑤𝑡+2 = 𝑃 (𝑤𝑡+2)
9: End for

the spike period, providing strong motivation to update weights

using both strong and weak labels. The proposed algorithm signifi-

cantly reduces TQ system FPR (37% during the normal period and

51% during the spike period), by rectifying incorrect invalidation

decisions without compromising recall on robotic signals. It also

reduces 9% more FPR during the normal period and 20% more FPR

during the spike period compared to the stacking model trained

using the strong labels at similar recall on robotic signals.

Table 1: %Change in metrics over existing system for normal
period

Algorithm FPR Recall on R1 Recall on R2

Stacking (strong labels) -31.5% -1.1% -0.6%
Stacking (weak labels) -25.3% -4.1% -1.1%

Online (weak labels) -37.2% -0.9% -1.1%

Proposed Algorithm -36.6% -0.9% -1.1%

Table 2: %Change in metrics over existing system for spike
period

Algorithm FPR Recall on R1 Recall on R2

Stacking (strong labels) -38.8% -1.6% -0.8%

Stacking (weak labels) -22.1% -1.9% -0.7%
Online (weak labels) -40.1% -0.9% -1.1%

Proposed Algorithm -50.8% -0.7% -1.4%

We present ablation studies for the choices of the clipping con-

stant 𝐾 in Table 3 and Table 4. We observe that no single value

of the clipping constant performs best on all metrics. Also, FPR

reduction is significantly less for the unclipped version (𝐾 = ∞)

signifying the importance of clipping the gradients while updating

the weights using the weak labels. We observe that the algorithm

with clipping constant as 5 is performs reasonably in reducing the

overall FPR of the system without compromising recall on robotic

coverage, and is thus our recommendation.

5 CONCLUSION AND FUTUREWORK
In this work, we compare a series of models trained using strong and

weak labels to combine decisions of expert algorithms, achieving

a large step function reduction in false positives without compro-

mising on IVT detection recall. Our proposed online algorithm

Table 3: Ablation over clipping constant K for normal period

Clipping Constant, 𝐾 FPR Recall on R1 Recall on R2

1 -37.4% -0.8% -1.2%

5 -36.6% -0.9% -1.1%

10 -33.9% -0.9% -1.0%

20 -25.9% -1.1% -0.8%

∞ -10.4% -1.0% -0.4%

Table 4: Ablation over clipping constant for spike period

Clipping Constant, 𝐾 FPR Recall on R1 Recall on R2

1 -49.7% -0.8% -1.3%
5 -50.8% -0.7% -1.4%

10 -53.3% -0.8% -1.7%

20 -53.4% -0.9% -2.5%

∞ -36.1% -1.0% -2.3%

reduces system FPR up to a mammoth 37%. It has the same regret(
O(

√
𝑇 )

)
as OMD, and is generic enough to be applied to scenarios

with multiple labels of varied quality. We believe that future exper-

iments on separate learning rates for weak and strong labels will

help to further boost performance. We would also like to explore

two-temperature logistic regression based on Tsallis divergence to

update model weights using weak labels [2].

REFERENCES
[1] Rajat Agarwal, Anand Muralidhar, Agniva Som, and Hemant Kowshik. 2022.

Self-supervised Representation Learning Across Sequential and Tabular Features

Using Transformers. In NeurIPS 2022 First Table Representation Workshop. https:

//openreview.net/forum?id=wIIJlmr1Dsk

[2] Ehsan Amid andManfred K.Warmuth. 2017. Two-temperature logistic regression

based on the Tsallis divergence. CoRR abs/1705.07210 (2017). arXiv:1705.07210

http://arxiv.org/abs/1705.07210

[3] Devansh Arpit, Stanisław Jastrzundefinedbski, Nicolas Ballas, David Krueger,

Emmanuel Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron

Courville, Yoshua Bengio, and Simon Lacoste-Julien. 2017. A Closer Look at

Memorization in Deep Networks. In Proceedings of the 34th International Con-
ference on Machine Learning - Volume 70 (Sydney, NSW, Australia) (ICML’17).
JMLR.org, 233–242.

[4] Gabor Bartok, David Pal, Csaba Szepesvari, and Istvan Szita. 2011. Online Learn-
ing - CMPUT 654. Lecture notes.

[5] Dimitri Bertsekas, Angelia Nedic, and Asuman Ozdaglar. 2003. Convex Analysis
and Optimization. Athena Scientific.

[6] Leo Breiman. 1996. Bagging predictors. Machine Learning 24 (1996).

[7] Sébastien Bubeck. 2011. Introduction to Online Optimization.

6

https://openreview.net/forum?id=wIIJlmr1Dsk
https://openreview.net/forum?id=wIIJlmr1Dsk
https://arxiv.org/abs/1705.07210
http://arxiv.org/abs/1705.07210


697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Decision Layer Under review, Online and Adaptive Recommender Systems, August 2023, Long Beach, CA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

[8] Sharad Chitlangia, Anand Muralidhar, and Rajat Agarwal. 2022. Self Supervised

Pre-training for Large Scale Tabular Data. In NeurIPS 2022 First Table Representa-
tion Workshop. https://openreview.net/forum?id=BXP02v4tZIL

[9] Thomas G. Dietterich. 2000. Ensemble Methods in Machine Learning. InMultiple
Classifier Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 1–15.

[10] Yoav Freund and Robert E. Schapire. 1996. Experiments with a New Boosting

Algorithm. In Proceedings of the Thirteenth International Conference on Interna-
tional Conference on Machine Learning (Bari, Italy) (ICML’96). Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 148–156.

[11] Jerome H. Friedman. 2001. Greedy function approximation: A gradient boosting

machine. The Annals of Statistics 29, 5 (2001), 1189 – 1232. https://doi.org/10.

1214/aos/1013203451

[12] M.A. Ganaie, Minghui Hu, A.K. Malik, M. Tanveer, and P.N. Suganthan. 2022. En-

semble deep learning: A review. Engineering Applications of Artificial Intelligence
115 (oct 2022), 105151. https://doi.org/10.1016/j.engappai.2022.105151

[13] Geoffrey J. Gordon. 1999. Regret Bounds for Prediction Problems. In Proceedings
of the Twelfth Annual Conference on Computational Learning Theory (Santa Cruz,

California, USA) (COLT ’99). Association for Computing Machinery, New York,

NY, USA, 29–40. https://doi.org/10.1145/307400.307410

[14] Elad Hazan. 2006. Efficient algorithms for online convex optimization and their
applications. Ph. D. Dissertation. Princeton University.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. 770–778. https://doi.org/10.1109/CVPR.2016.90

[16] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating

Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of
the 32nd International Conference on International Conference onMachine Learning
- Volume 37 (Lille, France) (ICML’15). JMLR.org, 448–456.

[17] Cheng Ju, Aurelien Bibaut, and Mark Laan. 2017. The Relative Performance

of Ensemble Methods with Deep Convolutional Neural Networks for Image

Classification. Journal of Applied Statistics 45 (04 2017). https://doi.org/10.1080/

02664763.2018.1441383

[18] Sham M. Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. 2012. Regularization

Techniques for Learning with Matrices. J. Mach. Learn. Res. 13, 1 (jun 2012),

1865–1890.

[19] Adam Kalai and Santosh Vempala. 2005. Efficient algorithms for online decision

problems. J. Comput. System Sci. 71, 3 (2005), 291–307. https://doi.org/10.1016/j.

jcss.2004.10.016 Learning Theory 2003.

[20] Jonathan Krause, Benjamin Sapp, Andrew Howard, Howard Zhou, Alexander

Toshev, Tom Duerig, James Philbin, and Li Fei-Fei. 2016. The Unreasonable

Effectiveness of Noisy Data for Fine-Grained Recognition. In Computer Vision –
ECCV 2016, Bastian Leibe, Jiri Matas, Nicu Sebe, and MaxWelling (Eds.). Springer

International Publishing, Cham, 301–320.

[21] Anders Krogh and John Hertz. 1991. A Simple Weight Decay Can Im-

prove Generalization. In Advances in Neural Information Processing
Systems, J. Moody, S. Hanson, and R.P. Lippmann (Eds.), Vol. 4. Morgan-

Kaufmann. https://proceedings.neurips.cc/paper_files/paper/1991/file/

8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf

[22] Brendan McMahan. 2011. Follow-the-Regularized-Leader and Mirror Descent:

Equivalence Theorems and L1 Regularization. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics (Proceedings of
Machine Learning Research, Vol. 15), Geoffrey Gordon, David Dunson, and

Miroslav Dudík (Eds.). PMLR, Fort Lauderdale, FL, USA, 525–533. https:

//proceedings.mlr.press/v15/mcmahan11b.html

[23] Aditya Krishna Menon, Ankit Singh Rawat, Sashank J. Reddi, and Sanjiv Kumar.

2020. Can gradient clipping mitigate label noise?. In International Conference on
Learning Representations. https://openreview.net/forum?id=rklB76EKPr

[24] D. Opitz and R. Maclin. 1999. Popular Ensemble Methods: An Empirical Study.

Journal of Artificial Intelligence Research 11 (aug 1999), 169–198. https://doi.org/

10.1613/jair.614

[25] Shai Shalev-Shwartz. 2007. Online learning: theory, algorithms and applications.
Ph. D. Dissertation. The Hebrew University of Jerusalem.

[26] Shai Shalev-Shwartz and Yoram Singer. 2007. A primal-dual perspective of

online learning algorithms. Machine Learning 69, 2 (2007), 115–142. https:

//doi.org/10.1007/s10994-007-5014-x

[27] Connor Shorten and Taghi M. Khoshgoftaar. 2019. A survey on Image Data

Augmentation for Deep Learning. Journal of Big Data 6, 1 (2019). https://doi.

org/10.1186/s40537-019-0197-0

[28] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional

Networks for Large-Scale Image Recognition. In 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http:

//arxiv.org/abs/1409.1556

[29] Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. 2022.

Learning from Noisy Labels with Deep Neural Networks: A Survey. IEEE Trans-
actions on Neural Networks and Learning Systems (2022).

[30] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from

Overfitting. Journal of Machine Learning Research 15, 56 (2014), 1929–1958.

http://jmlr.org/papers/v15/srivastava14a.html

[31] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.

Going deeper with convolutions. The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 1–9. https://doi.org/10.1109/CVPR.2015.7298594

[32] David H. Wolpert. 1992. Stacked generalization. Neural Networks 5, 2 (1992),
241–259. https://doi.org/10.1016/S0893-6080(05)80023-1

[33] Seniha Esen Yuksel, Joseph N. Wilson, and Paul D. Gader. 2012. Twenty Years of

Mixture of Experts. IEEE Transactions on Neural Networks and Learning Systems
23, 8 (2012), 1177–1193. https://doi.org/10.1109/TNNLS.2012.2200299

[34] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.

2021. Understanding Deep Learning (Still) Requires Rethinking Generalization.

Commun. ACM 64, 3 (feb 2021), 107–115. https://doi.org/10.1145/3446776

[35] Martin Zinkevich. 2003. Online Convex Programming and Generalized Infinites-

imal Gradient Ascent. In Proceedings of the Twentieth International Conference on
International Conference on Machine Learning (Washington, DC, USA) (ICML’03).
AAAI Press, 928–935.

7

https://openreview.net/forum?id=BXP02v4tZIL
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1016/j.engappai.2022.105151
https://doi.org/10.1145/307400.307410
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1080/02664763.2018.1441383
https://doi.org/10.1080/02664763.2018.1441383
https://doi.org/10.1016/j.jcss.2004.10.016
https://doi.org/10.1016/j.jcss.2004.10.016
https://proceedings.neurips.cc/paper_files/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf
https://proceedings.mlr.press/v15/mcmahan11b.html
https://proceedings.mlr.press/v15/mcmahan11b.html
https://openreview.net/forum?id=rklB76EKPr
https://doi.org/10.1613/jair.614
https://doi.org/10.1613/jair.614
https://doi.org/10.1007/s10994-007-5014-x
https://doi.org/10.1007/s10994-007-5014-x
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1109/TNNLS.2012.2200299
https://doi.org/10.1145/3446776

	Abstract
	1 Introduction
	1.1 Need to rectify system decisions

	2 Related work
	3 Algorithm overview
	3.1 Online convex optimization
	3.2 Online clipped gradient descent using weak and strong labels
	3.3 Theoretical results on regret bounds

	4 Results
	4.1 Model performance metrics

	5 Conclusion and future work
	References

