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ABSTRACT
Recommender Systems are essential for enhancing the user ex-
perience in various domains. As the next generation of in-flight
entertainment (IFE) systems offers a vast selection of multimedia
items, onboard recommender systems become necessary. How-
ever, due to the unique requirements of anonymous travelers, only
session-based recommender systems can effectively operate. More-
over, local models are required, and collaboration among multiple
peers with minimal data sharing is essential. Federated Learning,
a privacy-aware and scalable approach for training and operating
Machine Learning algorithms, is a natural solution to combine
with traditional recommendation algorithms, ensuring privacy and
delivering high-quality recommendations.

While there are established evaluation standards for centralized
recommender systems, there is currently no common agreed bench-
mark for federated recommender systems, especially for session-
based recommendations. This research aims to address this gap
by presenting the results of a performance comparison between
popular recommendation algorithms. We compare their traditional
monolithic implementation with their federated counterparts, con-
sidering the unique challenges of the in-flight entertainment setting.
By analyzing and comparing these approaches, we provide insights
into the effectiveness and efficiency of federated recommender
systems for session-based recommendations.

CCS CONCEPTS
• Information systems → Recommender systems; • Comput-
ing methodologies→ Distributed artificial intelligence; • General
and reference → Evaluation.
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1 INTRODUCTION
Recommender Systems (RSs) have become essential to contempo-
rary information portals, streaming platforms, and e-commerce
solutions. Originating from the field of RS [32], RSs now play a
crucial role in helping users gather information, plan vacations,
consume multimedia content, and make purchases. For instance,
popular streaming websites like Netflix boast a staggering catalog
of over 15 thousand movies and series, leaving customers with the
daunting task of making decisions. In this context, RS serve as a
valuable tool, assisting users in navigating through the vast array
of options and aiding their decision-making process by offering
personalized recommendations that align with their preferences
and requirements.

RSs employ user behavior analysis, social connections, and demo-
graphic data to understand individual preferences and generate per-
sonalized recommendations. However, such data collection poses a
significant threat to user privacy. While participants willingly share
personal information to receive enhanced recommendations, there
is simultaneous concern that these systems may gather excessive
information or exploit it for malicious purposes [41].

Recognizing the sensitivity of users regarding their data, gov-
ernments have taken steps to implement regulations and policies
governing the collection and processing of personal data. In 2017,
the European Union introduced the European Commission’s Gen-
eral Data Protection Regulation (GDPR), establishing privacy as a
fundamental right in the digital realm [38]. Compliance with these
regulations and laws is mandatory, necessitating incorporating
privacy awareness in modern RS [40].

In response to these privacy concerns, Google proposed a decen-
tralized machine learning approach known as Federated Learning
(FL)[25]. FLs architecture ensures that training data remains on
individual devices, enabling peers to train a shared model collabo-
ratively. Only model updates are transmitted to a central instance,
which aggregates the specific results, updates the global model, and
then distributes it back to the participants. This iterative process
is repeated until the desired level of accuracy is achieved or the
system continuously adapts to the user’s interactions.
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Given the promising privacy-preserving advantages of FL, it
became apparent that the research community began exploring
its integration into RS. This combination is known as Federated
Recommender System (FedRec) [42]. Unlike traditional monolithic
RS, FedRec ensures user privacy by conducting personalization
directly on the user’s device. Only interpretations of actions are
shared among peers, and data security can be further enhanced by
applying privacy techniques to the data and communication. With
FedRec, users can maintain their preferences in a locally refined
profile while still benefiting from the collective intelligence of the
crowd. So far, the interest on FedRec only started but showed a
high potential to address scalability, cooperation among operators,
and privacy challenges [21]. Several surveys giving an overview
of the current state of research were published quite recently to
present the different new algorithms [42], their applied domains,
and utilized data sets [3].

2 MOTIVATING CASE-STUDY
Millions of air passengers rely on In-Flight Entertainment (IFE) sys-
tems daily to enhance their travel experience. Studies have shown
that a positive multimedia experience can reduce passenger stress
levels. From the early days of in-flightmovies in 1921 to the personal
IFE systems available today, the evolution of multimedia content
on airplanes has been significant. However, current IFE systems
often have limited content, causing frequent travelers to exhaust
all available options quickly. To address this, the deployment of
next-generation IFE systems with a vast library of movies is the
logical next step.

Recently, IFE system providers have started expanding the range
of multimedia content available on airplanes, hosting hundreds to
thousands of items.With this abundance of choices, passengers now
face a challenge similar to browsing streaming platforms like Netflix.
They are overwhelmed by the options and experience the Paradox
of Choice while using the small devices installed in front of their
seats. To address this, passengers require suitable tools to navigate
the extensive content space. RSs are the natural choice to enhance
the user experience by offering personalized recommendations
based on their preferences.

2.1 Problem statement
During a flight, there are usually limited interactions between trav-
elers and the IFE system. Given the nature of the content and the
rather short time in front of the device, gathering sufficient data to
create comprehensive user profiles isn’t easy. Additionally, travelers
remain anonymous, and no persistent storage of their preferences
is established.

Due to the lack of network connectivity during the flight, a cen-
tral server on the airplane cannot calculate recommendations, and
interaction data from the local devices cannot be transmitted to
a remote server. The local devices, usually ARM-based, have lim-
ited memory and computational capabilities resources. Therefore,
they cannot handle the large models typically used by providers of
personalized services.

Even if local devices could operate on optimized models, up-
dating them with new information poses additional challenges.
Airplanes rely on satellite communication, and it is rare to have

connections with enough bandwidth to upload user interactions
and update models. Training modern Deep Learnings (DLs) models
require substantial resources, and there is a possibility that the
aircraft won’t have a stable connection to the central server when
a new model is ready for deployment. Consequently, there may be
a delay between the insights obtained from recent interaction data
and the implementation of an updated model. This delay can result
in lower-quality recommendations generated by outdated models.

Furthermore, both IFE system manufacturers and multimedia
providers gather valuable customer data, including browsing pat-
terns, interaction behavior, and viewing preferences. This data is
highly valuable for strategic decision-making, directly impacting
the companies’ worth. Consequently, these companies are reluctant
to share their data with others. However, an extended user base
could benefit all collaborators, including competitors, presenting a
dilemma.

2.2 Open questions regarding the case study
Given the environment of the case study, the following main ques-
tions were identified:

• How can anonymous users get good recommendations with
only minor captured information?

• How to share information between different peers without
disclosing private or business data?

• How Wisdom of the Crowd can be incorporated into a dis-
tributed recommendation environment?

• How to identify the best algorithmic approach?

The first three questions can be answered with modern state-
of-the-art approaches. Section 4 overviews the algorithmic and
architectural solutions for the tree questions. The last one is still
an open research topic, and this paper’s main contribution is one
of the first attempts to answer this question.

3 PAPER CONTRIBUTION
Since their first appearance, traditional centralized RS have been
extensively studied in research. Over the past two decades, a gold
standard has emerged for comparing different algorithms [7, 11,
14, 23, 44]. However, when it comes to FedRec, there is currently
no widely accepted guideline for comparing the capabilities and
limitations of different approaches. Many research publications
lack a comparative analysis of their proposed algorithms against
well-established methods in centralized and distributed settings.

In contrast to centralized RS that have access to the complete
dataset and operate on a single machine or cluster in a data center,
FedRec systems consist of potentially thousands of heterogeneous
devices, each with a limited view of its local data. This introduces
additional challenges and uncertainties in evaluating FedRec algo-
rithms, particularly in the context of Session-based Recommender
System (SBRS). To the best of our knowledge, there is no existing
combination of SBRS and FedRec.

Our work aims to address this gap by creating one of the first
comprehensive benchmarks for evaluating the impact of FL on the
overall quality of SBRS. We aim to transfer several popular SBRS
algorithms into a federated setting and compare their performance
against their centralized counterparts. By doing so, we aim to shed
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light on the potential benefits and limitations of using FL in SBRS
and provide valuable insights for future research in this area.

4 ALGORITHMIC BACKGROUND
RSs in the investigated environment consists of several central core
components. First, there is the core recommendation algorithm. Es-
pecially in short contextualized interactions, SBRSs showed promis-
ing results whose quality in accuracy exceeded those of traditional
approaches. FL allows training, distributing, and especially updating
a RS model, which is even offline available. The combinations of RS
and FL formed an emerging research field, which is called FedRecs.
The following will describe the approaches and give background
information on each core component.

4.1 Session-based recommender systems
SBRSs are the state-of-the-art approach to generate recommen-
dations when only limited knowledge about their preferences is
available. Widely deployed in portals, where the captured infor-
mation consists of interaction sequences with mostly 4-10 events,
SBRSs treat each interaction stream independently. They are called
sessions. A session is an ordered or unordered list of interactions
from one user with a clear temporal boundary, which happen in
the same context and contain latently the recent user goals [39]. As
SBRSs treat sessions isolated and allow to discover the user’s goal
independently. Therefore, they can generate high-quality recom-
mendations even to anonymous users without needing a persistent
profile [39].

The algorithms of SBRS can be classified into the following three
families of methods [39]: Conventional approaches, which rely on
sequential rule mining, apply modified traditional RS approaches
or use Markov Chains to recommend the next items; Latent rep-
resentation approaches, which first learn latent features of users
and items and then use the learned representations to forecast
future steps of the user and more recently Deep Learning (DL)-
based approaches, which learn non-linear functions which capture
sequentially dependent relations between different entities and
then predict the next interactions. The following presents the most
popular DL approaches for SBRS.

4.1.1 Variational Auto Encoders (VAEs). Auto Encoders (AEs) [31]
take the users’ unordered sessions as input and reconstruct the input
vector as an output [33]. VAEs have a similar architectural structure
to AE. Conversely, they reconstruct the probabilistic distribution
of the input data [16]. As a side-effect, the preference likelihood
of unseen items is generated in that process, and those items with
the highest values form then the users’ recommendations. Outper-
forming the traditional AE, they are considered today as one of the
state-of-the-art approaches in recommendation accuracy [22].

4.1.2 Neural Collaborative Filtering (NCF). With their huge suc-
cess in the Netflix competition [5], the research community for RS
applied factorization methods in the recommendation tasks [18]. As
the original unordered sessions consisting of user-item interactions
form a large but sparse matrix, decomposing the original matrix
into two smaller ones creates low-dimensional and dense represen-
tations of the items’ features and users’ preferences in the form of
their embeddings. NCF replaces then the scalar product of classical

Matrix Factorisation (MF) with a Multilayer Perceptron (MLP) to es-
timate and function and to learn non-linear dependencies between
items and users [13].

4.1.3 DeepFM. DeepFM is a SBRS algorithm that combines DL and
Factorisation Machine (FM) [30] techniques to provide personal-
ized recommendations in session-based scenarios. As introduced
by Guo et al., DeepFM aims to capture low-order and high-order
feature interactions for improved recommendation accuracy [12].
It employs a Deep Neural Network (DNN) to learn complex rep-
resentations of user behavior patterns and combines them with
factorization machines to model feature interactions. DeepFM can
effectively capture linear and non-linear relationships in session
data by incorporating shallow and deep learning components.

4.1.4 Caser. Caser is a SBRS algorithm that utilizes Convolutional
Neural Networks (CNNs) to provide personalized recommendations
based on sequential user behavior [35]. By treating user behavior
as a sequence of items within a session and employing 1D convolu-
tions over item embeddings, Caser captures temporal and sequen-
tial patterns effectively. It consists of session-parallel mini-batches
for parallel computation, convolutional operations to capture item
dependencies, and a fully connected layer for generating recommen-
dation scores. Caser excels in session-based scenarios by addressing
long-term preferences and short-term interests.

4.1.5 GRU4Rec. GRU4Rec is a SBRS algorithm that utilizes Gated
Recurrent Units (GRUs) [8] to provide personalized recommenda-
tions based on sequential user behavior. As former interactions
directly influence future decisions, the regard of that additional in-
formation would lead to higher recommendation accuracy in SBRS.
GRU4Rec and its extensions are the first recommendation system
that incorporated that kind of approach [15]. By employing GRUs,
Gru4rec effectively models the temporal dynamics and captures
the sequential patterns in user behavior. After several Recurrent
Neural Network (RNN)-layers, a final group of MLP layers is used
to learn a classifier for predicting the next item of interest.

4.1.6 BERT4Rec. Transformer architectures are state-of-the-art in
Natural Language Processing (NLP) processing [37]. In our written
language, each word carries a semantic that influences the meaning
of the other sentences’ words. BERT was one of the first successful
applications of the transformer model on normal languages [9].
That concept was applied in the context of SBRS in its first im-
plementation BERT4Rec [34], as the underlying idea is that each
interaction event influences a future one comparable to a word in a
sentence. In the training phase of such RS, intermediate interactions
in ordered sessions are masked in the training phase, and the model
tries to fill those gaps.

4.2 Federated Learning
The traditional centralized approach for deep learning DL involves
uploading and processing data on a central server or data center.
However, this approach is no longer sustainable due to privacy
concerns associated with user data.

FL addresses these privacy concerns by enabling collaborative
and distributed training of machine learning models without ex-
posing sensitive data to training partners [25]. Training models for
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Machine Learning (ML) require substantial amounts of data. Still,
companies have valid reasons to keep their data confidential, and
individuals are cautious about sharing personal information like
location and browsing behavior. With increasing privacy concerns
and government regulations, collecting data has become a signifi-
cant challenge. Valuable data that could be utilized for advanced
recommender systems are often trapped in data silos or personal
devices, limiting its use for training. However, FL offers a solution to
this fundamental challenge by enabling private and secure training
of modern recommender system models.

With its decentralized architecture, the training data in FL re-
mains on personal devices. Users collaboratively train a shared
model by sending updates derived from locally refined models to
a central instance. The central instance aggregates these updates
and transfers the refined model or updates back to the peers. This
iterative process continues until the desired level of precision is
achieved, or the system continuously adapts to user interactions
over its usage period. As a result, each device has a locally available
global model, enabling independent inferences without relying on
a central instance or network availability. The setup of a plain FL
consists in general of three main parts: The ML model to be fitted
in the training/operation process, a central managing instance, and
an arbitrary number of participating peers:

• ML model: An ML model is a set of algorithms and their
parameters to calculate predictions based on the collected
data. While the model is defined priorly, its weights and
biases are adjusted during the iterative training of the model.

• Central instance: The central instance manages the co-
ordination of the peers. It selects a subset of peers which
will contribute to the upcoming training round. These active
peers transmit their updates to the central instance, which
merges that information into the new model and distributes
it afterward to the network.

• Participating peers: If a peer becomes active, it conducts a
predefined number of training steps with local data. After fin-
ishing that task, the peer updates the central instance. Each
peer uses its local model to perform the model inferences
with its data.

In FL, the model’s training is not performed centrally, each peer
trains the model with his own collected training data individually.
Figure 1 shows the training process of traditional FL. It is organized
in rounds, where each round has three separate steps:

(1) Model distribution (Step 1): The central instance starts
each new training round by selecting a set of participating
peers from the available ones. Then, the central instance
transmits the current model to them. Each selected peer will
then perform the training with their locally available data.

(2) Model training (Step 2): The training phase of the model
consists of two steps for each selected peer: First, the recent
model is fitted with the locally available data (Step 2a), and
then the updates on the model are transmitted back to the
central instance (Step 2b).

(3) Model aggregation (Step 3): Once the central instance col-
lects all local updates from the participating peers in the
current round, it merges that information into a global up-
date on the model. In the traditional FL setting, the central

instance updates the global model by averaging the collected
model weights into a new model (FedAVG) [25]. This step is
called aggregation (Step 3).
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Figure 1: Typical training process of a horizontal Federated
Learning system.

4.3 Federated Recommender Systems
Beginning with the first implementations and the promising ben-
efits of FL on privacy challenges, it was natural that the research
community started to examine the training and operation in RSs
a FL setting. The concept of FedRecs was introduced by Yang et al.
[42]. FedRec combines traditional RS methods with the FL approach
to creating a decentralized and privacy-preserving RS. In FedRec,
peers, whether they are users or companies, retain their data lo-
cally, including interaction patterns, ratings, and user profiles. This
information is not shared with other peers during the training and
operation of the RS. Additionally, each party typically has access to
publicly available item information, such as descriptions, features,
or categories. FedRecs can be roughly categorized into three types:
Horizontal FL, Vertical FL and into Transfer FL [43]:

• Horizontal FedRec: Peers share a common item space.
Items on all clients belong to the same domain and have
the same feature space. Each peer contains a set of users
or even refers to a single one. An example of a Horizontal
FedRec would be a mobile movie RS from a single company,
where each user has his user profile on his device, and all
users have access to the same collection of movies.

• Vertical FedRec: Vertical FedRec describes federated model
training on heterogeneous data distributed across multiple
data silos. The peers have the same user set, but each provides
different recommendable items or item features. Its target is
aggregating these features in a privacy-assuring process to
create a collaborative model with information from various
parties. An example of such a system would be a shared RS
from two companies of different fields, one for books and
one for movies. They have the same user base consisting of
a shared user identifier.
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• Transfer FedRec: Transfer FedRecs are used in scenarios
where the peers’ data differ not only in the user space but
also in the item space. For example, two companies from dif-
ferent businesses and locations want to build a new shared
RS without disclosing their private data. The user sets of
those two companies only overlap to a small degree, and
because of their different domains, only a tiny feature space
intersection of their provided items exists. In this case, a
common representation between the two spaces is learned
with transfer learning techniques [27]. Those few common
user/item combinations form a bridge to generate the rec-
ommendations with only features taken from one side.

5 EVALUATION SETUP
This section focuses on evaluating algorithms using a real data set
provided by an industrial partner. The evaluation was conducted of-
fline, independently of real users, and involved comparing predicted
behavior with actual captured information. Figure 2 shows the gen-
eral process of the applied offline evaluation process according to
[7].

Data set
𝐷

𝑘-fold cross splitting

𝑇𝑖· · ·𝑇1 · · · 𝑇𝑘Data splits

Traing set
𝑇𝑡

Test set
𝑇𝑒

Recommender

Recommendation
Process

Recommendation
Evaluation

Item
recommendations

Data
ProcessingRecommender training

Figure 2: General overview if the offline evaluation process

We measured the systems by comparing the predicted behavior
with the real captured information [14]. In this process, "real" user
data is preferable over synthetic data sets [2]. Even though an offline
evaluation has its particular drawbacks as it relies on heuristics
with assumptions, that step gives valuable insights before the roll-
out of the systems. Therefore it is a best practice to design and
implement several recommendation algorithms and evaluate them
before the best-performing algorithms are deployed and evaluated
online [17].

The implementation of the algorithms employed PyTorch for
recommendation purposes and the IBM FL framework for federated
learning. A central system provided a simulated peer environment
to simulate a federated environment. Even though with FedScale
[20] and LEAF [6] powerful simulation frameworks for FL exist,

we decided to create our implementation because of the particular
requirements, data sets, and evaluation metrics of FedRec.

The evaluation criteria encompassed accuracy,measured through
Normalized Discounted Cumulative Gain (𝑛𝐷𝐶𝐺@𝑘), and diversity,
evaluated using Long Tail Coverage (𝐿𝐶𝐶@𝑘). By employing these
evaluation methods, we aimed to gain valuable insights into the al-
gorithms’ performance before deploying the systems. This introduc-
tory section provides an overview of the evaluation methodology
utilized in the subsequent analysis.

5.1 Software and hardware environment
The recommendation algorithms and their evaluation were imple-
mented in PyTorch [29]. For the FL-part, the IBM FL framework
was used [24]. That framework decouples the FL methods, such
as peer-aggregator communication, local data loading, and model
aggregation from the model development. Furthermore, it contains
several state-of-the-art aggregation methods and connects seam-
lessly with many existing centralized PyTorch implementations
of DL-algorithms. Nevertheless, several extensions of that library,
which regard the particular details of the applied RS-algorithms,
needed to be applied. See table 1 for further details on versions of
the used software stack.

Operating system Linux Ubuntu 22.04
Python version 3.6.13
JupyterLab version 3.0.12
PyTorch version 1.8.1
IBM FL version 1.0.7
CPU Model Intel Xeon E5-2695
Cores 18
CPU Frequency 2.1 GHz
RAM 512 GByte
GPU Model GTX 1080
RAM 12 GByte
CUDA version 11.2

Table 1: Evaluation Environment

As the number of peers in a FL-based RS easily surpasses hun-
dreds or even thousands of nodes, an evaluation running on real
devices on such a scale is not feasible. A central system provided
the environment with several simulated peers and gave a good
real-world distribution estimation. Table 1 shows the hardware
specifications of that server. Each peer, as well as the central aggre-
gating instance, runs locally in Jupyter notebooks. Therefore, the
impact of bandwidth and network restrictions can not be measured,
and that factor is omitted in the evaluation.

5.2 Data source
Using a data set provided by an industrial partner, the algorithms
were evaluated offline independently of real users. SAFRAN, an
industrial partner who manufactures IFE-systems, created that data
set. It contains 900k play-stop-pause events on multimedia content
of airplane travelers and identifiers of 1.7k flights and IFE-seats from
one week. We consider all interactions from one IFE-seat in a single
flight as an independent session and regard only play-events as
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significant interaction type. As there are indications that consumed
content correlates with the flight destination, we treat each flight
as a single peer.

#Flights Items Sessions ∅ Sessions/Peer ∅ Items/Session
8 192 3,149 393.6 5.5
16 320 6,116 382.3 5.3
32 336 11,070 346.0 5.0
64 523 19,659 307.4 4.7
128 1,253 32,658 255.5 4.5

Table 2: Statistics of the fly-media data set after its prepro-
cessing and cleaning

We derived out of the original data set partitions of size 𝑁 =

[8, 16, 32, 64, 128], each consisting of the 𝑁 peers with the highest
session count from the original data, regardless of the particular
session length. All items were removed that were only accessed
once. Table 2 shows its characteristics after its preparation and
cleaning. The data was then partitioned for each particular num-
ber of peers into five disjunctive slices of roughly equal size for a
5-fold cross evaluation [19]. It was ensured that all session data of
a single airplane was never distributed over different slices. Four
slices were used for training the models, and the remaining slice
then for evaluating the system. The data set for training was aug-
mented by splitting every single session into sequences of shorter
length, always beginning with the first item of the session and its
𝑘 succeeding items. The last item was then the label to predict.
For evaluation, the last item of each test session was removed, and
the systems’ task was to predict that missing item. This approach
allows the simulation of the recommenders’ prediction behavior
based on the information it would have available when requesting
a recommendation at a certain point of time [11].

5.3 Applied evaluation criteria
Evaluating a RS using a comprehensive set of metrics is significant.
Relying on a single metric for the evaluation would generally result
in a biased assessment that fails to capture the overall performance
of the RS [44]. When optimizing an RS based on one metric, it
is crucial to assess whether this optimization negatively impacts
performance in other areas [10]. Accuracy is probably the most
important dimension when evaluating a RS. Nevertheless, recent
research trends indicated that diversity is equally important in
the perceived users’ experience [26]. We apply 𝑛𝐷𝐶𝐺@𝑘 to mea-
sure the ranking performance of the investigated algorithms and
𝐿𝐶𝐶@𝑘 to measure the algorithms’ coverage in the long tail. For
both metrics, 𝑘 = 20 was chosen as the size of the recommendation
lists, as this is a common length in recommenders’ literature.

5.3.1 Normalized Discounted Cumulative Gain (𝑛𝐷𝐶𝐺@𝑘). as rank-
ingmetric regards the position of the items in the result list [36]. The
calculated estimation of preference likelihood -denoted as relevance
𝑟𝑒𝑙- orders that list. 𝑛𝐷𝐶𝐺@𝑘 involves discounting the relevance
score by dividing it by the log of the corresponding position. All
items 𝑖 ∈ 𝐼𝑒,𝑢 taken from the users’ 𝑢 item test set 𝐼𝑒,𝑢 are consid-
ered relevant (𝑟𝑒𝑙 = 1), and all other items of the recommendation

list are irrelevant (𝑟𝑒𝑙 = 0). The result is normalized by the ideal
order, given by 𝑖𝐷𝐶𝐺@𝑘 . For each user, there is usually exactly one
item ranked first. The system’s performance is then measured by
normalizing the 𝑛𝐷𝐶𝐺@𝑘 scores of the test sets’𝑈𝑡 users.

𝐷𝐶𝐺@𝑘 =

𝑁∑︁
𝑖=1

2𝑟𝑒𝑙𝑖 − 1
log2 (𝑖 + 1)

𝑖𝐷𝐶𝐺@𝑘 =

|𝑅𝐸𝐿𝑁 |∑︁
𝑖=1

2𝑟𝑒𝑙𝑖 − 1
log2 (𝑖 + 1)

𝑛𝐷𝐶𝐺@𝑘 =
𝐷𝐶𝐺@𝑘

𝑖𝐷𝐶𝐺@𝑘

5.3.2 Long Tail Coverage 𝐿𝐶𝐶@𝑘 . First formulated by Park and
Tuzhilin as the long-tail problem [28], it is challenging for most
RS algorithms to access items in the tail. The long tail denotes the
distribution of items, where only a few items have high popularity,
and most items in the system are rarely accessed [4]. Our data set
follows such a typical distribution of interaction count on items
(figure 3). The short-head 𝐻 denotes the set of those 20% of items
with the most user interactions, while the set of long-tail items 𝑇
contains the majority of items (80%) with fewer interactions.
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Figure 3: Typical long tail distribution of items and their
corresponding ratings in the fly-media data set.

To compare different algorithms in their capability to access the
long-tail, coverage metrics were introduced [1]. Themost important
among those is the Long Tail Coverage 𝐿𝐶𝐶@𝑘 . Unlike other long-
tail metrics such 𝐴𝑃𝐿@𝑘 or 𝑅𝑃@𝑘 , it measures the diversity of
long-tail recommendations by considering the uniqueness of items.
A system could even reach high values for 𝑅𝑃@𝑘 and 𝐿𝐶𝐶@𝑘 by
recommending only a small set of long-tail items. If measures the
fraction of unique long-tail items 𝑖 ∈ 𝑇 from the whole set 𝑇 over
the full recommendation lists 𝑅𝐿@𝑘 (𝑢) for the users 𝑢 in the test
set𝑈𝑡 . It is formally defined as:

𝐿𝐶𝐶@𝑘 =
1
|𝑇 | ·

������©«
⋃
𝑢∈𝑈𝑡

𝑅𝐿@𝑘 (𝑢)ª®¬ ∩𝑇

������
6 EVALUATION
This section describes the training process of the implemented
algorithms and their evaluation.We show and compare the behavior
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of the algorithms in monolithic and federated settings according
to the deployed evaluation criteria. The impact of the number of
nodes is shown for the federated setting. Furthermore, investigate
the suitability of the algorithms to run on embedded computers
with ARM architecture, as similar devices are deployed in the real
world IFE-systems.

6.1 Training of the models
The algorithms from section 4.1 were implemented following the
reference architecture from their corresponding publications. Table
3 shows the sizes for the models and their determined hyperparame-
ters. We applied a grid-search approach to determine the best values
for learning rate, batch size, epochs, and in the federated setting
for the number of rounds and local epoch. We discovered that the
number of FL rounds have only a minor impact on the overall per-
formance. The same algorithms were then implemented according
to the FL paradigm in a horizontal architectural style, as data from
the same domain is used as input. Models of identical configuration
are used for both the monolithic and federated implementations.
That means they have the same number of weights/biases and sizes.

Furthermore, table 3 presents the measured RAM demands for
each model during the training phase. Although Bert4Rec demon-
strates promising potential, its usage in the federated settingwas un-
feasible due to its significantly greater memory requirements than
the simpler models. Despite having a similar number of weights
and biases as the other algorithms, the excessive resource demands
of Bert4Rec surpassed the capabilities of our systems, rendering
any further advancements in the federated setting impractical.

6.2 Impact of number of nodes
Figure 4 shows the accuracy in the 𝑛𝐷𝐶𝐺@𝑘 metric of federated
algorithms regarding the FL-nodes of the network. With a grow-
ing number of participating peers, more session data is included
in the training process. While increasing the node count initially
improves accuracy, there is a point beyond which the accuracy
starts to decline. Including more parties with a more disjunct set of
preferences and a larger corpus of items results in a more sparse
data set. That data shifting challenge degrades the overall system’s
accuracy. This leads to a stronger shift in focus towards the tail
of the data set, resulting in a decline in overall performance. It
appears that capturing the more complex patterns and details in the
tail becomes more challenging, especially for the VAE. Therefore,
adjusting the VAE’s learning strategy to prioritize the tail of the
dataset does not yield improved results but worsens its accuracy.
At the same time, the other approaches are more stable over the
number of nodes.

6.3 Accuracy
Figure 5 shows the monolithic implementations’ accuracy com-
pared to its federated counterpart running on 128 nodes. Our anal-
ysis indicates that VAE performs exceptionally well on the data
set. This success can be attributed to its ability to learn session-
independently and focus on the data set’s key aspects, specifically
the head. In contrast, the session-regarding approaches suffer from
the data sets unbalanced distribution of session-based data, given
by the data sets strong bias on the tail. As NCFs accuracy is already
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Figure 4: Accuracy of federated algorithms concerning the
number of participating FL nodes.

low in its monolithic version, its accuracy loss in the federated
implementation is not significant enough to state a negative impact
because of the federalization. Casers minor accuracy degradation
was expected because of the aggregation process of FL but could be
mitigated with different aggregation strategies. The isolated exami-
nation of individual sessions within the nodes hinders the ability
to obtain a reliable mean during aggregation in GRU4Rec. This is
due to the model’s focus on individual sessions, preventing it from
capturing the overall trends and patterns in the data. As a result,
the aggregated mean may not accurately represent the underlying
data distribution, limiting the effectiveness of GRU4Rec in provid-
ing accurate recommendations. On the other hand, the DeepFM
model significantly benefits from FL, although the reasons behind
this observation remain unclear. Nevertheless, the small monolithic
accuracy gives no real statistical evidence for that improvement.
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Figure 5: Accuracy of the implemented algorithms in the
monolithic and federated setting. The outlined bar repre-
sents its monolithic version, and the filled bar represents its
federated version.

The experimental results suggest that training VAEs using Feder-
ated Learning yields better performance than traditional monolithic
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Name Weights and Biases Model Size Required RAM Learn rate Batch size Epochs FL rounds

VAE mono 8,425 36.4 KByte 4,010 MByte 0.00001 500 199 -
federated 0.00001 126 2 15

NCF mono 15,404,897 59 MByte 1,250 MByte 0.00001 500 50 -
federated 0.00001 126 2 8

DeepFM mono 1,513,803 6.3 MByte 6,700 MByte 0.00001 256 100 -
federated 0.00001 126 2 10

Caser mono 2,090,711 8.4 MByte 3,550 MByte 0.001 512 21 -
federated 0.001 126 2 10

GRU4Rec mono 1,277,006 5.1 MByte 4,000 MByte 0.0001 100 98 -
federated 0.0001 126 2 12

BERT4Rec mono 1,087,507 4.5 MByte 50,000 MByte - - - -
federated - - - -

Table 3: Values of the models’ hyperparameters for their monolithic and federated training and their required memory.

training on a data set with a highly imbalanced distribution of data
points. The concentration of data points on a small subset of the
data set makes reproducing the desired outputs easier for the VAEs.
With FL, where data is distributed across nodes, the VAEs may
experience a smaller shift in learning within the nodes. This shift
could potentially be further reduced through aggregation, leading
to improved results. This observation supports the hypothesis that
FL can enhance VAE training on imbalanced data sets.

6.4 Long-Tail-Coverage
Figure 6 shows the monolithic implementations’ long tail coverage
𝐿𝐿𝐶@20 compared to its federated counterpart running on 128
nodes. The uneven distribution of data, with a significant empha-
sis on the head, poses a challenge for models aiming to achieve
comprehensive coverage. While VAE and Casser excel in capturing
patterns within the head, their limited attention to the tail hinders
their ability to make accurate predictions in that region. On the
other hand, alternative architectures that exhibit higher LLC ad-
dress this limitation by generating diverse predictions throughout
the data distribution. Nevertheless, the broader coverage achieved
by these architectures comes at the expense of decreased accuracy,
as the models may struggle to precisely capture the more frequent
patterns.

6.5 Recommendation time on embedded devices
Figure 7 shows the needed time to calculate a single recommenda-
tion for each algorithm. We deployed the pre-trained models each
on Raspberry Pi version 4 and version 3 computing modules to sim-
ulate the small computing devices in existing IFE-systems. Those
devices have the same ARM architecture and similar computing
capabilities and available memory as the computing modules. To
avoid the impacts of parallel running processes on the system, 10000
recommendations were generated, and the average time needed for
a single recommendation gives the presented value. DeepFM is not
included in this graph, as its default architecture only predicts a
single item’s usefulness and does not give a likelihood of prefer-
ence over all available items in parallel. While on a Pi 4, a single
recommendation already needed about 13 seconds, the hardware
watchdog of the Pi 3 canceled the process because of DeepFMs
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Figure 6: Long-tail coverage in ‰of the implemented algo-
rithms. Hereby denote the outlined colored bar the algo-
rithms’ accuracy in its monolithic version and the filled bar
for its achieved accuracy as a federated version.

high computing demands. Bert4Rec could not be deployed, as its
requirements are a magnitude higher than the available resources.
It was expected that the more modern Pi 4 has a shorter calculation
time for a single recommendation, and for all investigated algo-
rithms, it outperforms the older model by about 20 % . Naturally,
the RNN based Gru4Rec needs the highest computation time, while
the simple VAE outperforms the other models.

7 CONCLUSION
In conclusion, this study provides insights into the transferability
of monolithically designed DL-based RSs into the federated setting.
The results indicate that the success of such a transfer is highly
dependent on the characteristics of the data set used.

Unexpectedly, the VAE architecture demonstrated exceptional
performance in the federated setting. However, SBRSs, particularly
the GRU-based system, encountered challenges related to data dis-
tribution when it came to federated learning. On the other hand,
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Figure 7: Average time needed to generate a single recom-
mendation of the implemented algorithms. Hereby denote
the outlined bar for the algorithms’ average time on a Rasp-
berryPi 3 and the filled bar for its time on a RaspberryPi 4.

the Caser architecture experienced only minor difficulties during
the federation step.

With its architectural focus on isolating and prioritizing the user-
centric distribution of data, FL holds the potential for improving
the diversity of recommendations, especially for tail-related rec-
ommendations. The investigated architectures have also shown
the ability to run on small embedded devices, such as those found
in IFE- solutions while maintaining a satisfactory user experience.
Unfortunately, the size of transformers still poses a limitation on
their feasibility for federated learning in embedded systems.

The advantages of federated learning, particularly regarding data
privacy and scalability, make it a promising approach for recom-
mender systems. However, it is crucial to conduct comprehensive
investigations using diverse data sets to ensure unbiased conclu-
sions and mitigate potential biases associated with the specific data
set used in this study.
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