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Abstract
Uniform random exploration in contextual bandits supports off-
policy learning via supervision but incurs high regret, making it
impractical for many applications. Conversely, non-uniform explo-
ration offers better immediate performance but lacks support for
off-policy learning. Recent research suggests that regression oracles
can bridge this gap by combining non-uniform exploration with
supervised learning. In this paper, we analyze these approaches
within a real-world industrial context at Adyen, a large global pay-
ments processor characterized by batch logged delayed feedback,
short-term memory, and dynamic action spaces under the Empiri-
cal Risk Minimization (ERM) framework. Our analysis reveals that
while regression oracles significantly improve performance, they
introduce challenges due to rigid algorithmic assumptions. Specifi-
cally, we observe that as a policy improves, subsequent generations
may perform worse due to shifts in the reward distribution and
increased class imbalance in the training data. This effect arises
when regression oracles influence probability estimates and the
realizability of subsequent policy models, leading to fluctuations in
performance across iterations. Our findings highlight the need for
more adaptable algorithms that can leverage the benefits of regres-
sion oracles without introducing instability in policy performance
over time.
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1 Introduction
Adyen is a global payments processor with a diverse product suite
including tools to optimize transaction authorization rates. Various
interventions, conditioned on context, can be applied at payment-
time to boost transaction authorization rates, naturally framing
this problem in a contextual bandit setting where interventions
correspond to actions and authorization feedback from the bank
(environment) serve as rewards. It is instructive to view this system
in the framework of a recommender system.
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In many industrial recommender system applications, learn-
ing from historical logs—often collected under biased feedback
conditions—is crucial. This paper investigates how traditional su-
pervised learning, via Empirical Risk Minimization (ERM), can be
combined with decision-making in interactive settings as formal-
ized by contextual bandits. Our aim is to leverage supervised signals
from logged data to inform more effective exploration strategies.

Empirical Risk Minimization (ERM) underpins traditional su-
pervised learning. In the ERM framework, a learning algorithm is
given a dataset

D = {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1,

where each instance 𝑥𝑖 is paired with a fully observed ground-truth
label 𝑦𝑖 . The goal is to learn a hypothesis ℎ ∈ H that minimizes
the empirical risk,

𝑅(ℎ) = 1
𝑛

𝑛∑︁
𝑖=1

ℓ (𝑦𝑖 , ℎ(𝑥𝑖 )),

with ℓ : Y × Y → R+ quantifying the discrepancy between the
predicted and true labels. This framework assumes that the training
data is both complete and unbiased—a full-information setting. In
contrast, many real-world systems rely on data collected through
biased logging policies, which may cause ERM to inadvertently
learn these biases instead of the true underlying relationships.

Contextual bandits introduce a setting where, at each round, an
algorithm observes a context 𝑥 ∈ X and must choose an action
𝑎 ∈ A from a (finite or continuous) action set. Once an action
is taken, the algorithm receives a reward 𝑟 ∈ R, but it observes
feedback only for the chosen action. Formally, at each round 𝑡 the
learning process is as follows:

(1) Receive a context 𝑥𝑡 ∈ X.
(2) Choose an action 𝑎𝑡 ∈ A according to a policy ℎ : X → A.
(3) Observe the reward 𝑟𝑡 = 𝑟 (𝑥𝑡 , 𝑎𝑡 ) associated with the chosen

action.

The goal is to develop a policy that maximizes cumulative reward
(or equivalently minimizes regret relative to the best policy). Two
challenges arise from this formulation:

• Exploration vs. Exploitation: Since the algorithm sees
only the reward of the chosen action, it must balance ex-
ploiting actions with high estimated rewards and exploring
less-certain actions to acquire additional information.

• Partial Feedback:Unlike full-information settings, the learner
receives only partial feedback, making standard ERM tech-
niques directly inapplicable.

A common exploration strategy in this setting is the 𝜖-greedy
policy. Under this approach, the learner selects the action with the
highest estimated reward with probability 1 − 𝜖 , and chooses an
action uniformly at random with probability 𝜖 . Formally, for a given
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context 𝑥 and action set A, the 𝜖-greedy policy ℎ𝜖 is defined as

ℎ𝜖 (𝑥) =

arg max

𝑎∈A
𝑅(𝑥, 𝑎), with probability 1 − 𝜖,

a random action from A, with probability 𝜖,

where 𝑅(𝑥, 𝑎) estimates the expected reward for taking action 𝑎 in
context 𝑥 .

The 𝜖-greedy exploration strategy has no specific modeling as-
sumptions which means it can easily leverage existing ML infras-
tructure: a la regression models (e.g., gradient boosting or NNs).
This makes it very popular in industry [2, 7, 11]), however, its lin-
ear regret due to the reliance on uniform random exploration is an
expensive trade off.

Of course, contextual bandits literature hasmade progress against
the regret issue for years and many solutions have been proposed
however, they all comewith limitations. For instance, early methods
like Upper Confidence Bound (UCB/1) and Thompson Sampling
enjoyed non-uniform exploration, but either lack adequate con-
textual integration or require heavy computational overhead and
rigid modeling assumptions. LinUCB [6] improved upon this by
incorporating linear models with analytical uncertainty bounds,
though the linear model introduces context, its linearity limits its
expressiveness (modeling assumptions). Subsequent approaches,
such as NeuralUCB [10] and NNLinUCB [8], relax the linearity
assumption but incur high computational costs or perform only
“shadow” exploration on neural network features. In contrast, meth-
ods like EE-Net [9] employ multiple neural networks to decouple
exploitation from exploration, achieving better performance in
some settings but still have rigid modeling assumptions.

A recent line of work further advances exploration by introduc-
ing regression oracles [3, 4]. These methods transform supervised
learning predictions into online policies, thereby harnessing the
power of general-purpose supervised algorithms (e.g., neural net-
works or boosting) to address the exploration–exploitation trade-
off.

In this work, we build on these ideas by proposing amethodology
that achieves non-uniform exploration in contextual bandits with
standard supervised models.

Our contributions are novel applications of regression ora-
cles that enable:

• Non-random uniform exploration without modeling assump-
tions

• Context between arms
• Logged bandit feedback

2 Methodology
Given the introduction to the setting and constraints at Adyen we
hope to clearly define our problem space and layout our approach
to a solution.

2.1 Problem Definition
The objective is to maximize cumulative reward over time by learn-
ing an optimal policy 𝜋 that maps contexts to actions.

Algorithm Contextual Non-uniform Assumptions*
UCB1 × ✓ ×
TS × ✓ ×
LinUCB ✓ ✓ ×
NNLinUCB ✓ ✓ ×
NeuralUCB ✓ ✓ ×
Epsilon-greedy ✓ × ✓
SquareCB ✓ ✓ ✓

Table 1: Comparison of contextual bandit algorithms across
key dimensions. *Modeling Assumptions. One can observe
the tradeoff between low cost exploration andmodel assump-
tions wrt context

Currently, 𝜋 is 𝜖-greedy, using a boosting model during exploita-
tion. However, uniform random exploration in 𝜖-greedy yields lin-
ear regret; reducing this regret remains an important open problem
with substantial practical value.

Motivated from the introduction and the problem, we have 3
requirements:

• Usage of logged bandit feedback
• Contextual with no modeling assumptions
• Non-uniform random exploration

How can we perform non-uniform exploration while leveraging
logged bandit feedback? Regression oracles provide a promising
direction by connecting supervised learning techniques with con-
textual bandit algorithms.

2.2 Regression Oracles
Regression oracles are black box functions that make real-valued
predictions for rewards 𝑟𝑡 ∈ 𝑅 based on context-action pairs (𝑥𝑡 , 𝑎𝑡 ).
After each prediction, the oracle receives the actual reward and
updates its internal model 𝑟𝑡 .

𝑓 (𝑥, 𝑎) = E[𝑟 | 𝑥, 𝑎],
the expected reward for action 𝑎 in context 𝑥 . The regression oracle
selects actions using the induced policy:

𝜋𝑓 (𝑥) = arg max
𝑎∈A

𝑓 (𝑥, 𝑎),

where 𝑓 ∈ F is the function learned by the regression oracle to
approximate the true reward function.

2.2.1 SquareCB. Some regression oracles, like SquareCB [4] are
able to explore non-randomly which is the key for industrial ap-
plications. At each step, it computes predictions for each action,
selects the best, assigns probabilities inversely proportional to the
gap from the best, samples an action, and updates the oracle. This
routine is outlined in Algorithm 1, inspired by Krishnamurthy [5].
The key is the probability selection scheme from Abe & Long [1],
is visualized in Figure 1. The key advantage is that it can leverage
supervised learning models, such as boosting, for the oracle, which
makes it practical for industrial applications.

2.3 Assumptions
The implementation of regression oracles in large-scale industrial
settings, such as at Adyen, introduces unique considerations and
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Algorithm 1 SquareCB: A Regression Oracle-Based Non-Uniform
Exploration Algorithm. The algorithm computes action probabili-
ties based on the gap between the best predicted reward 𝑟𝑡,𝑏𝑡 and
each alternative action 𝑟𝑡,𝑎 , samples an action accordingly, and
periodically retrains the offline regression oracle using a batch of
logged data.
1: Parameters:

Learning rate 𝛾 > 0, exploration parameter 𝜇 > 0.
Offline regression oracle 𝑆𝑞𝐴𝑙𝑔 trained over a window of 𝐿
days.

2: for 𝑡 = 1, . . . ,𝑇 do
3: Receive context 𝑥𝑡 .
4: For each action 𝑎 ∈ 𝐴, compute

𝑟𝑡,𝑎 = 𝑟𝑡 (𝑥𝑡 , 𝑎) .

5: Let 𝑏𝑡 = argmax𝑎∈𝐴 𝑟𝑡,𝑎 .
6: For each 𝑎 ≠ 𝑏𝑡 , define

𝑝𝑡,𝑎 =
1

𝜇 + 𝛾
(
𝑟𝑡,𝑏𝑡 − 𝑟𝑡,𝑎

) ,
and set

𝑝𝑡,𝑏𝑡 = 1 −
∑︁
𝑎≠𝑏𝑡

𝑝𝑡,𝑎 .

7: Sample 𝑎𝑡 ∼ 𝑝𝑡 and observe reward 𝑟𝑡 ∼ 𝑅(𝑥𝑡 , 𝑎𝑡 ).
8: end for
9: Collect 𝑇 = 𝐿 samples of ((𝑥𝑡 , 𝑎𝑡 ), 𝑟𝑡 ) and retrain 𝑆𝑞𝐴𝑙𝑔.

Figure 1: SquareCB Regression Oracle. For 𝑎 ∈ A, let 𝑟𝑎 =

𝑟 (𝑥, 𝑎) (e.g., using XGBoost for prediction), then build an ex-
ploration probability distribution 𝑝𝑡 based on differences 𝑏𝑡 .

challenges. Below, we outline the key assumptions and how they
adapt to our setting.

2.3.1 Delayed Feedback (Offline Oracles). A key assumption un-
derlying regression oracles is the availability of online oracles that

can update incrementally online. However, in many industrial
environments—including Adyen—maintaining a system that sup-
ports online learning is impractical due to modeling or system
constraints (eg updating a tree model incrementally [2]).

Instead, we employ a batch-offline system, where model updates
occur in discrete batches rather than in real time. This approach
strikes a necessary balance between performance and infrastruc-
tural efficiency. Nevertheless, it represents a departure from the
theoretical underpinnings, as the model’s parameters are updated
in a delayed fashion rather than online. This could be viewed in
paradigm of delayed feedback from reinforcement learning litera-
ture.

2.3.2 Regression. The SquareCB framework assumes that the func-
tions in the value function class 𝐹 are optimized using square-loss
regression – as implied by the name. However, given that our re-
wards are binary, we employ a binary cross-entropy loss function
for our regression oracle. This adaptation aligns the loss function
with the binary nature of our reward signals while preserving the
oracle’s ability to approximate expected rewards.

2.3.3 Realizability. Regression oracles operate under a strong real-
izability assumption, which requires the value function 𝑟 chosen
by the oracle to closely approximate the true reward distribution.
Specifically, for each trial (or in our case, transaction) 𝑡 , there exists
a function 𝑟∗ ∈ 𝑅 such that:

𝑟∗ (𝑥, 𝑎) = E[𝑙𝑡 (𝑎) | 𝑥𝑡 = 𝑥],
where 𝑟∗ represents the true underlying reward function. The

oracle’s goal is to select a function 𝑟 that best approximates 𝑟∗.
In practice, however, this assumption is often partially violated
because the true reward distribution is complex and hidden. As such,
even the best available value function 𝑟 may only approximate the
true mean reward, introducing potential gaps between theoretical
assumptions and practical implementations.

2.3.4 Dynamic Action Space. Traditional contextual bandit frame-
works assume a static action space A, where the set of available
actions remains fixed. While this is true in our setting, we introduce
a dynamic action space, where action space (eligible actions) can
vary across payment contexts. This dynamic nature increases the
complexity for both the oracle and the policy, as they must account
for additional variability when learning and optimizing over the
action space.

For each context 𝑥𝑡 , the set of available actionsA𝑡 is determined
dynamically using a two-step process:

(1) Rule-based Filtering: Remove actions that conflict with
predefined constraints, such as:
• Merchant payment service provider contracts,
• Card network regulations (e.g., country restrictions im-
posed by Visa/MasterCard),

• Transaction amount thresholds.
(2) Risk-based Pruning: Exclude actions considered high-risk

based on:
• Historical fraud rates for specific merchant, country, and
currency combinations,

• Real-time monitoring of authorization rates.
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This process typically produced |A𝑡 | ∈ [2, 15] actions per trans-
action, with median 4 actions.

3 Experiments
In this section, we empirically evaluate our proposed regression
oracle approach—implemented via SquareCB—in the context of
payment processing at Adyen. We compare its performance against
a standard 𝜖-greedy baseline under realistic industrial settings. Our
experiments focus on key metrics such as overall performance,
effective exploration, and the impact on subsequent model training.

3.1 Experimental Setup
Our evaluation framework consists of three main components:

(1) DataCollection:Weutilize a logged bandit feedback dataset
extracted from Adyen’s production system. The dataset con-
sists of 180 million samples collected over a 30-day period.
Each sample comprises 56 contextual features (e.g., trans-
action amount, country, device type), an action label corre-
sponding to the applied intervention, and a binary reward
indicating whether the payment was authorized. Table 2
provides an overview of the dataset attributes.

(2) Offline Oracle Training:We train a regression oracle using
the Empirical Risk Minimization (ERM) framework. In our
implementation, we employ a boosting classifier with binary
cross-entropy loss to approximate the expected reward for
each context-action pair (last line of Algorithm 1.)

(3) Policy Deployment andA/B Testing: The trained oracle is
integrated into the SquareCB policy to generate non-uniform
exploration probabilities (see Algorithm 1). For comparison,
we deploy a traditional 𝜖-greedy policy at varying explo-
ration rates (1%, 4%, and 6%) as baselines. Both policies are
A/B tested by routing 5% of the live traffic to each variant
over a four-week period.

Attribute Description
Samples 180M
Features 56
Target Authorized (binary)
Imbalance 90% positive

Table 2: Dataset Description for Offline Oracle Training

3.2 Evaluation Metrics
We evaluate performance based on the following metrics:

• Cumulative Reward/Uplift: The primary metric is the
cumulative number of authorized transactions. We report
percentage uplifts relative to the 𝜖-greedy baseline.

• Effective Exploration Rate: Defined as the proportion of
rounds in which a non-greedy (i.e., non-optimal) action is
chosen. This metric helps us assess whether the non-uniform
exploration of SquareCB improves the diversity of training
data compared to uniform random exploration.

• ActionDiversity:Wequantify diversity using Lorenz curves
and the traffic-weighted Gini coefficient, thereby measur-
ing how evenly different interventions are selected across
varying context groups.

The experiments involved A/B testingmodels with varying learn-
ing rates against 𝜖-greedy baselines. The baseline uniform random
𝜖-greedy policies were set at three levels of exploration: 1%, 4%,
and 6%. Each variant received 5% of the total traffic to ensure a fair
comparison. We conducted experiments over a four-week period.

Point estimates of success probabilities were calculated, along
with 75% and 95% confidence intervals to measure the robustness
of each policy.

Experiment Learning Rate % Total Traffic Duration
Oracle 1 1% 5% 4 weeks
Oracle 2 4% 5% 1 week
Oracle 3 6% 5% 1 week
𝜖-greedy N/A 5% 4 weeks

Table 3: A/B tests with different learning rates and traffic
splits.

As noted in the Introduction, we did not benchmark against
UCB-style or Thompson-Sampling algorithms because they lack
support for both contextual information and non-uniform explo-
ration—two requirements central to our setting. NeuralUCB was
likewise omitted due to its substantial computational overhead and
additional neural-network modeling assumptions. A summary of
these differences appears in Table 1.

Payments come into Adyen - if they pass various risk checks
they will be sent to our optimization system where 1 or many
interventions will be applied (based on the oracle) and sent to the
environment for the reward.

4 Results
First we’ll look at overall performance and then break it down by
exploration and exploitation segments.

4.1 Overall Performance
Figure 2 shows that the best-performing SquareCB variant achieved
a +0.1% uplift over the baseline 𝜖-greedy policy within the four-
week test period. This improvement translates to an estimated 9
million incremental authorized transactions per year. The confi-
dence intervals (95%) indicate that the improvement is statistically
significant. The intuition behind the performance gains of regres-
sion oracles is attributed to the reduced regret from non-uniform
random exploration – the premise of this whole line of research.

To confirm our intuition, we measured our effective/actual ex-
ploration rates for 𝜖-greedy and SquareCB policies respectively
in Table 4 with the hypothesis that regression oracles would ex-
plore less but more efficiently. However, we observed surprising
results: The 1% 𝜖-greedy policy was exploring only 0.7% of the
time compared to 1.2% for even the most exploitative SquareCB
50K variant. These counterintuitive results are explored more in
discussion section 4.3 .
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Figure 2: 95% confidence intervals comparing the perfor-
mance of SquareCB and 𝜖-greedy policies.

Given these results, wewanted to compare 𝜖-greedy and SquareCB
while controlling for exploration rates. So, in the spirit of fairness,
Figure 3 illustrates the performance of SquareCB across different
learning rates against the 𝜖-greedy baselines.

Figure 3: Comparison of 𝜖-greedy and SquareCB variants
across various exploration rates. Effective exploration rates
are in table 4. e-greedy 6% is 3.45% and SquareCB 10k is 3.6%
which are essentially the same rate of exploration and as you
can see SquareCB variant outperforms. It should be high-
lighted that for equal exploration rates (3.5%) the regression
oracle variant suffers much less regret.

Interestingly enough, controlling for exploration rate, the SquareCB
policy (square 10k) always outperforms the baseline (e-greedy 6%)

4.2 Exploration vs. Exploitation Trade-off
Given that we wish to see the benefits of non-random exploration
policy, we compare performance on both parts of the traffic: ex-
ploration and exploitation. The hypothesis is that we should see
marked uplift for the exploration traffic.

Focusing on the exploration traffic, when the non-optimal ac-
tion was taken, the SquareCB policy shows a significant +11% im-
provement in performance, as it selects actions from a non-uniform
random distribution via the SqAlg in Algorithm 1. Figure 4.

Now, looking just at the exploitation traffic, the results are counter-
intuitive as we observed a slight decrease in exploitation perfor-
mance, with a reduction of 0.33% compared to the baseline policy
(Figure 5).

Figure 4: Exploration performance (non-optimal action
rounds) comparing SquareCB and 𝜖-greedy policies.

Figure 5: Exploitation performance (optimal action rounds)
for SquareCB and 𝜖-greedy policies.

This trade-off is due to two main factors:
(1) Partial Realizability: The supervised classification algo-

rithm imperfectly models the reward distribution, partially
violating the realizability criteria. This highlights the im-
portance of using high-quality classifiers, as a suboptimal
classifier can increase regret, as noted in the original theo-
retical framework.

(2) Action Probability Distribution: Exploration and exploita-
tion are no longer entirely random. Traffic where multiple
actions have closely clustered probabilities tends to be ex-
plored more often, while traffic with a single clear "best"
action (with a high probability gap between it and the others)
is exploited. In our setup, this often corresponds to scenar-
ios with larger action spaces (|𝐴| > 2), where performance
expectations are naturally lower due to increased variability.

Despite the slight loss in exploitation, the gains in exploration
far outweigh this trade-off, resulting in an overall improvement in
policy performance (Figure 2).

In addition to the strong performance we found some interesting
insights as we analyzed the experimental results more closely.

4.3 Exploration Across Dynamic Action Spaces
In dynamic action spaces, adequate exploration across varying
action space sizes is challenging and nuanced. 𝜖-greedy policies are
invariant to action space and explore uniformly regardless of size
which results in failing to address the data sparsity in larger spaces
or over-exploiting in small spaces. In contrast, regression oracles like
SquareCB adapts their exploration strategies to the action space,
focusing more on larger action spaces where data scarcity is more
pronounced. This behavior is visualized in Figure 6, which shows



OARS ’25, August 3-7, 2025, Toronto, Canada Akhila Vangara and Alex Egg

how SquareCB allocates exploration more effectively than 𝜖-greedy
across different action space sizes. Uniform random exploration in

Figure 6: Exploration rates across action space sizes for 𝜖-
greedy and SquareCB policies. One can observe that for ac-
tion space sizes greater than 3 the SquareCB policy starts to
explore more frequently.

the small-action-space regime is the cause of a phenomenon we’re
calling effective exploration. The effective exploration rate—defined
as the percentage of instances where the action chosen was not the
optimal action—was often lower than the nominal exploration rate
(𝜖) in 𝜖-greedy policies. This discrepancy arises because there is a
1/𝑁𝐴 chance of selecting the best action randomly, where 𝑁𝐴 is
the size of the action space. For example, if 𝑁𝐴 = 2 then effective
exploration of a 1% 𝜖-greedy policy could be much lower than the
expected 1% due to the high probability of selecting the optimal
action during exploration.

Variant Effective Exploration %
SquareCB LR1k 13.0%
SquareCB LR 4K 6.5%
SquareCB LR 7K 4.6%
SquareCB LR 10K 3.6%
SquareCB LR 50K 1.2%
𝜖-Greedy (6%) 3.41%
𝜖-Greedy (4%) 2.3%
𝜖-Greedy (1%) 0.7%

Table 4: Effective Exploration Rates for SquareCB and 𝜖-
Greedy Policies. Counterintuitively, the 𝜖-greedy policies
are exploring less than than expected due to the dynamics
of the small action space regime.

Given the dynamic action space in our setup, understanding ef-
fective exploration rate was crucial for assessing its contribution to
training data diversity. Table 4 summarizes the effective exploration
rates for SquareCB and 𝜖-greedy variants.

4.4 Action Diversity
Aswe have verified the expected exploration improvements promised
by regression oracles, now we’d like to look at a common prob-
lem with polices in general: popularity bias, or framed in another
perspective: action diversity.

Maintaining action diversity is critical for training robust next-
generation policies. In our setup, dynamic action spaces inherently

introduce biases, as certain actions are only available in specific
contexts. This context-based action restriction creates an imbalance
in the action distribution.

To evaluate action diversity, we measured Lorenz curves and
Gini coefficients across various context groups. Figures 7 and 8
show improvements in action diversity for SquareCB compared to
𝜖-greedy policies. SquareCB effectively diversified action selection
in larger action spaces while maintaining performance in simpler
contexts.

Figure 7: Lorenz Curve for contexts with 4 possible actions.
(The word "flags" in the chart can be interpreted as "actions".)

Figure 8: Lorenz Curve for contexts with 12 possible actions.
(The word "flags" in the chart can be interpreted as "actions".)

Interestingly, in simpler contexts with only two possible actions,
SquareCB and 𝜖-greedy policies showed nearly identical Lorenz
curves (Figure 9). This indicates that SquareCB allocates exploration
where it is needed most, leaving low-dimensional action spaces largely
unaffected.

Figure 9: Lorenz Curve for contexts with 2 possible actions.
(The word "flags" in the chart can be interpreted as "actions".)

Table 5 provides the traffic-weighted Gini coefficients for each
policy, showing that SquareCB reduced action inequality compared
to the baseline 𝜖-greedy policy.
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These results indicate that SquareCB is better able to diver-
sify action selection, especially in contexts with larger action sets.
Nonetheless, the skewed exploration may lead to an imbalance in
training data (fewer negative labels), which is discussed in Sec-
tion 4.3.

Model Gini Coefficient
𝜖-Greedy 0.39742
SquareCB 0.39265

Table 5: Traffic-weighted Gini coefficients for action diversity
(lower values indicate better diversity).

4.5 Class Imbalance
A key finding of our study is that while the enhanced exploration
of SquareCB improves immediate policy performance, it also exac-
erbates class imbalance in the logged data used for training future
models (oracles). For instance, bandit feedback from the baseline
𝜖-greedy policies exhibits a class imbalance of approximately 87.4%
positive rewards. Under the SquareCB regime, this imbalance in-
creases to 93.5%, which correlates with a 0.2% performance regres-
sion (see Figure 10).

Figure 10: Comparison of two 𝜖-greedy policies trained on
data from uniform and non-uniform (SquareCB) exploration.
The performance drop in the SquareCB-based training data
is attributed to an increased imbalance between positive and
negative labels.

As SquareCB improves the success rate of exploration actions,
the frequency of negative outcomes (i.e., failed actions) decreases.
These negative labels are essential for supervised models to learn
robust decision boundaries between good and poor actions. Their
reduction biases the training process, ultimately degrading the gen-
eralization capability of subsequent models. In other words, as the
proportion of positive rewards increases, the resulting imbalance in
the training data inadvertently compromises the quality of future
models. This feedback loop highlights a fundamental challenge
when applying ERM to logged bandit feedback. As current policies

improve, the quality of training data for subsequent models deteri-
orates, resulting in weaker supervised models that eventually harm
future policies. This paradox highlights a fundamental flaw in using
ERM for bandit feedback.

In addition, since the exploration is non-random, we can infer
that the exploration data tend to be concentrated in the region of
the higher action space size in this case of dynamic action spaces.
Thus we lose the uniformity in data we have in epsilon greedy - of
context and action combinations, which adds to the impact on future
iterations of models trained on the logged feedback, explained
further in the next section.

Figure 11: Performance of two second generation models
resulting from Epsilon Greedy policy and Regression Ora-
cle. Despite Exploration sample being a significantly smaller
part of the training data (𝑁𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 >> 𝑁𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 ) and
exploitation being the majority in the training data of each,
the Regression Oracle’s second generation regresses in per-
formance compared to Epsilon Greedy.

4.5.1 Second Generation of Models. As shown in Figure 11, the
second generation of models is affected by the sampling skew in-
troduced by the non-greedy selection rules of SquareCB. The 𝜖-
greedy policy contributes a small share of uniformly sampled data,
enriching the next-generation training set with diverse triplets
(context, action, reward). While SquareCB increases action diver-
sity by occasionally selecting the second- or third-best action, it still
cannot match 𝜖-greedy’s uniformly distributed (context, action)
pairs and the resulting more balanced reward distribution that
benefits subsequent training iterations.

5 Discussion
5.1 ERM for Bandit Feedback
In our setting at Adyen, ERM leverages logged bandit feedback
(𝑥, 𝑎, 𝑟 ), where 𝑟 ∈ [0, 1], to learn the conditional distribution 𝑃 (𝑟 |
𝑥, 𝑎). The goal is to predict the expected reward 𝑟 for a given context-
action pair (𝑥, 𝑎), enabling the policy to select actions that maximize
expected rewards.

Empirical Risk Minimization (ERM) performs effectively when
provided with ample and diverse training data. However, in the
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context of logged bandit feedback, only a limited subset of context-
action pairs is observed, as counterfactual outcomes for unchosen
actions remain unknown. This scenario, commonly referred to as
partial feedback, introduces significant imbalances in the training
data. Specifically, the logged bandit data tends to disproportion-
ately represent actions with higher predicted probabilities of suc-
cess, while actions with lower probabilities are underexplored. This
imbalance distorts the learned conditional distribution 𝑃 (𝑟 | 𝑥, 𝑎),
as the dataset lacks sufficient negative labels (representing low-
reward actions). Consequently, the model struggles to effectively
distinguish between high- and low-reward actions, impairing its
ability to generalize to unseen or underexplored actions. This chal-
lenge arises because ERM inherently assumes a full-data setting, an
assumption that is fundamentally violated in the bandit feedback
paradigm.

6 Future Work
Counterfactual Risk Minimization (CRM) provides an effec-
tive foundation for addressing the challenges of partial feedback
in logged bandit data and represents the focus of our next line of
research. By leveraging inverse propensity scoring (IPS) to reweight
observed data, CRM addresses the inherent imbalances in logged
feedback by assigning greater weight to underrepresented actions
and mitigating the over-representation of high-reward actions, en-
abling more accurate reward estimation. Furthermore, CRM directly
optimizes a counterfactual objective and employs variance reduc-
tion techniques, such as self-normalized estimators or clipping, to
enhance stability and efficiency. Regularization methods further
prevent overfitting to the reweighted data, ensuring better gen-
eralization to unseen or under-explored actions. By aligning the
training objective with the counterfactual nature of logged ban-
dit feedback, CRM offers a promising pathway to overcoming the
limitations of ERM, paving the way for the development of ro-
bust, generalizable policies in settings with incomplete and biased
feedback—an avenue we aim to explore in future work.

7 Conclusion
In this work, we addressed the challenge of leveraging logged bandit
feedback to learn effective policies offline, a critical need in indus-
try where untested policies cannot be fielded. While traditional
contextual bandit methods rely on uniform random exploration
or on-policy learning, we demonstrated the benefits of adopting
regression oracles for non-uniform exploration, significantly reduc-
ing regret and improving performance.
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A Appendix
A.1 Setting the Exploration Percentage
Upon tuning the learning rate and finding the initial selection of
variants we wanted to experiment with, we also found the corre-
sponding exploration percentages we would gain if we used these
learning rates for the SquareCB policy.

Learning Rate Exploration Percentage
10K 3.7%
7K 4.6%
4K 6.5%
1K 13%

Table 6: Exploration Percentage Guaranteed by various learn-
ing rates for SquareCB

A.2 Learning Rate Tuning
The SquareCB policy, has a tunable parameter 𝛾 , the learning rate.
Essentially this controls the amount of emphasis we wish to apply
in the probability distribution calculation of squareCB:

𝑝𝑡 (𝑎) =
1

𝐴 + 𝛾 (𝑦𝑡,𝑏𝑡 − 𝑦𝑡,𝑎𝑡 )
(1)

Where 𝑦𝑡,𝑏𝑡 is the predicted probability for the best action and
𝑦𝑡,𝑎𝑡 is the predicted probability of every other action. Therefore, 𝛾
controls the importance given to the distance of an action from the
best action [4]. Therefore we tune the probability of selecting an
action keeping in mind: the lower the learning rate, the closer the
probability of selecting a certain action moves to uniform selection,
the higher the learning rate, the more this probability depends on
the distance from the predicted probability of success of the best
action.

An initial selection of models for experimentation was done
through tuning of the learning rate - by observing the distribution
of the "predicted probability of success" of the action selected, by
the supervised classification model with a range of learning rates.
Given the large volume of transactions at Adyen, the goal was to
ensure that the predicted probability of success distribution of the
SquareCB Policy was as close to a 100% greedy policy. For reference,
this is how the distribution of probability of success of selection
action looked for a learning rate of 1000:

Figure 12: Probability distribution of selection actions 𝑎 for
a purely greedy/exploitation policy vs a square-cb policy.

And this is how it looked for a learning rate of 10000:

Figure 13: SelectedActionProbabilityDistributionwith learn-
ing rate 10000

The selection of learning rate was done based on this probability
distribution, exploration percentage and performance in A/B testing
over a period of experimentation.

A.3 Hyperparams
A.3.1 Model Configuration. We implemented our regression oracle
using XGBoost with the following key hyperparameters:

Table 7: XGBoost Hyperparameters

Parameter Value Description

learning_rate 0.1 Step size shrinkage
max_depth 10 Maximum tree depth
subsample 0.8 Fraction of samples per tree
colsample_bytree 0.8 Fraction of features per tree
n_estimators 1000 Number of boosting rounds
objective binary:logistic Loss function

Training required approximately 4 hours per model on 32 CPU
cores, with periodic retraining every 7 days to maintain freshness.

A.3.2 Feature Engineering. Our feature pipeline included:
• Contextual features: Transaction amount, currency, coun-
try, merchant category, device type

• Temporal features: Rolling 7-day authorization rates, time
since last transaction

• Embedding-based features: Merchant representations learned
via historical transaction patterns

• Normalization: Min-max scaling for monetary amounts
• Imputation: Median values for missing numeric features,
special category for missing categoricals
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