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Introduction
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Transformer Architecture for Recommendation

SASRec: The model is trained to predict the next item in the
sequence, and during inference, it can recommend a list of items that
the user is likely to interact with next.

BERT4Rec: BERT4Rec applies the masked language modeling
technique from BERT to recommendation systems.

etc.

YaChen Yan, Liubo Li FLASH4Rec August 6, 2023 4 / 24



Transformer Architecture for Recommendation Cont.

Figure: SASRec vs. BERT4Rec1

1Petrov et al.
YaChen Yan, Liubo Li FLASH4Rec August 6, 2023 5 / 24



Motivation

User-Aware Recommendation

Leveraging user demographics and profiles to generate dynamic item
sequence representation.

Lightweight but still performant Transformer Layer

A more efficient alternative to multi-head self-attention.
Linear Attention: O(N2) → O(N).
An alternative to FFN having higher modeling capacity

YaChen Yan, Liubo Li FLASH4Rec August 6, 2023 6 / 24



Proposed Methods

YaChen Yan, Liubo Li FLASH4Rec August 6, 2023 7 / 24



The Architecture of FLASH4Rec
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Figure: The Architecture of FLASH4Rec
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FLASH4Rec

We introduce a new architecture called FLASH4Rec, which efficiently
models item dependencies in users’ historical behavior sequences.

The architecture consists of a Gated Attention Layer and a
Sparsely-Gated Mixture-of-Experts Layer.

The Gated Attention Layer computes user-aware item sequence
representations, while the SparseMoE Layer increases the model’s
capacity without increasing computational costs.

To prevent overfitting, we include a Top-K Dropout mechanism that
encourages the model to learn from long-tail attention positions.
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Gated Attention Layer Cont.
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Figure: The Architecture of Gated Attention Layer
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Gated Attention Layer Cont.

QKV:

Z = σ(XIWz) ∈ RT×k (1)

V = σ(XIWv ) ∈ RT×k (2)

Gating:

U = σ(Concat(XI ,XU)Wu) ∈ RT×k (3)

Attention:

A = softmax(
Q(Z )K(Z )⊤√

dk
) ∈ RT×T (4)

A = 1 +

(
Q(Z )

∥Q(Z )∥

)⊤(
K(Z )

∥K(Z )∥

)
∈ RT×T (5)

Output:

O = U ⊗ AV (6)
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Sparse Mixture-of-Experts Layer
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Figure: The Architecture of Sparse Mixture-of-Experts Layer Layer
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Noisy Gating Network
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Figure: The Noisy Gating Network within Sparse Mixture-of-Experts Layer
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SparseMoE Components

Experts: Feed-Forward Network (FNN)

Noisy Gating Network:

A neural network selecting the Top-1 experts per item embedding.
Load Balance Regularization.

Sparse Dispatcher

Dispatch input and sparsely activate corresponding experts.
Combine each expert’s output.
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Top-K Dropout

Item Popularity: Power-Law Distribution

Bias the model to overly rely on on popular item’s embedding

Balance: short-tail item embeddings vs. long-tail item embeddings
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Top-K Dropout

Formally given a self-attention weight matrix A ∈ RT×T , we firstly
compute its Top-K position indicator SA, in which each element Si ,j is
defined as:

Si ,j =

{
1 if Ai ,j is in the top k elements of Ai ,·

0 otherwise.
(7)

Next, we want to randomly dropout self-attention weights within the
Top-K positions to produce the Top-K mask matrix MA with dropout rate
p:

Mi ,j =

{
0 if si ,j ∗ Bernoulli(p) = 1

1 otherwise,
(8)
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Top-K Dropout

After the dropout is applied, we re-scale the self-attention weights by
scaling factor f :

f =
1

1.0− (
∑T

i=1

∑T
j=1 Ai ,j ∗Mi ,j/

∑T
i=1

∑T
j=1 Ai ,j)

(9)
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Experiment
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Model Performance Comparison

Table: Performance Comparison of Different Algorithms on ML-1M, ML-20M and
Yelp Dataset.

ML-1M ML-20M Yelp
Model Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

MF-BPR 0.0740 0.0377 0.0807 0.0407 0.0191 0.0092
GRU4Rec 0.2132 0.1093 0.1544 0.0839 0.0113 0.0048
SASRec 0.1993 0.1078 0.1439 0.0724 0.0146 0.0076

BERT4Rec 0.2584 0.1392 0.2393 0.1310 0.0149 0.0079

FLASH4Rec 0.2841 0.1568 0.2554 0.1487 0.0151 0.0081
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Evaluation on Efficiency

Table: Efficiency Comparison of BERT4Rec and FLASH4Rec on ML-1M Dataset.

Params FLOPs

BERT4Rec 3.08M 74.12M
FLASH4Rec 3.16M 63.10M
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Ablation Study

Table: Abalation Study about key componenets of FLASH4Rec on ML-1M
Dataset.

Recall@10 NDCG@10

FLASH4Rec 0.2841 0.1568

w/o Gated Attention 0.2690 0.1488
w/o SparseMoE Layer 0.2787 0.1535
w/o Top-K Dropout 0.2765 0.1512
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Conclusions
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Conclusions

We introduce FLASH4Rec, a Transformer variant for sequential
recommendation, employing a Gated Attention Layer and
Sparsely-Gated Mixture-of-Experts Layer for efficient and effective
user-aware item sequence representation.

The Top-K Dropout technique is designed to facilitate model learning
from low-attention positions, thereby reducing over-fitting.
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End

Thank You!
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