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ABSTRACT

We consider the problem of learning to rank a set of candidates

which are rated by a set of assessors. In several practical settings

(candidate-assessor, for instance), the assessors are divided into

groups/panels, and each panel assesses a set of candidates. Asses-

sors might look for different qualities/features in a candidate and

base their ratings on their features of interest hence in order to

obtain a final ranking, it is important to understand the ratings

given by each assessor to every candidate. However, it may not

always be feasible for each assessor to evaluate every candidate. In

this setup, standard matrix completion algorithms fail to recover

the entire matrix meaningfully, so the ranking obtained from such

a complete matrix is inaccurate. We consider the case where a small

extra budget is available, which an algorithm can actively use to

choose a set of (candidate, assessor) pairs to query with the goal of

obtaining good rankings of the candidates. We propose two novel

algorithms, 1. Query by Candidate Probability and Local Coher-

ence Probability (OPLP-Query) and 2. Query by Base Factor and

Local Coherence Probability (BFLP-Query). These algorithms learn

good rankings in an active query-based model and are inspired

by two natural but different human assessor models. Specifically,

they decide to query a candidate-assessor pair by first choosing a

candidate using a certain probabilistic scheme and then choosing

the best assessor to query for the chosen candidate based on a local

coherence-based probabilistic scheme. We conduct extensive exper-

iments on synthetic and real-world datasets to test our algorithms

against several baselines, which show that the proposed algorithms

clearly outperform existing baselines for this problem.
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1 INTRODUCTION

We consider the problem of learning to rank a set of candidates

which are assessed/rated by a set of human assessors. The setup we

are interested in is when the assessors are partitioned into disjoint

sets, and each set assesses only a subset of candidates. Further-

more, each candidate is assessed by exactly one assessor set. The

scenario described is relevant to several real-world applications,

such as the admission process for graduate programs at universities

or the recruitment of employees by companies, where a limited

number of vacancies must be filled from a pool of candidates. A

common method for determining the ranking of these candidates

is to calculate each candidate’s score as the average of their ratings

from the panel of assessors they interviewed with and then rank

all the candidates based on these scores. If all assessors are similar
and homogeneous, such an approach makes sense and might lead to

good rankings. However, in actual assessments, each assessor may

have unique criteria for evaluating a candidate, leading to different

ratings based on their individual preferences and perspectives. In

this case, the scheme described earlier might not be the best way to

obtain scores. Even if the assessors were explicitly asked to rate the

candidates based on the same set of features, there may be generous
assessors who tend to rate with larger scores and strict assessors
who might rate with smaller scores [16, 17]. These variations make

the problem of combining the ratings across panels ineffective, and

one needs alternate approaches.

In this work, we consider the above-described setup where in

addition to the ratings given by the assessor groups to subsets

of candidates, we also have a limited extra budget which can be

used to query new (candidate-assessor) pair (see Figure 1). In the

candidate-assessor example, the budget might correspond to re-

questing ratings from assessors outside the original evaluation

panel for a candidate. In practice, one can assume that the videos of

the interviews are recorded, and the assessors might be requested to

view these videos and give their ratings. However, it is impractical

to ask all interviewers to view videos of all interviews they did not

attend, and hence one has a limited budget to work with. Thus, the

problem we consider is the following: Given a set of candidates as-
sessed by disjoint assessor sets and a query budget, develop algorithms
to adaptively query unrated (candidate-assessor) pairs for ratings to
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Figure 1: Block Diagonal Structure of candidate-assessor data.

Green Entry: candidates assessed by a respective reviewer,

Blue: Not evaluated by respective reviewer, Pink: Actively

queried entries using available budget. Known entries(green)

are spread across the block diagonal as a disjoint set of can-

didates assessed by a disjoint set of assessors.

obtain good rankings over the candidates, especially focusing on the
top 𝑘 ranks. Figure 1 describes our setup.

Remark: Our objective is to achieve good rankings at the top,

as in many practical scenarios (graduate program admits, for in-

stance) only a limited number of positions need to be filled after

evaluating multiple applicants.

Our Contributions: We consider two natural assessor models

where the underlying true candidate-assessor rating matrix is of

low rank. In the first model, the assessor-weightage for the latent

features is assumed to be Gaussian distributed, and in a second

model inspired by the work of [11] where there is a small set of

candidates which act as base factors in the sense that the convex

hull of their features contains the features of all the candidates. We

develop two novel algorithms, which we call, 1. Query by Candidate
Probability and Local Coherence Probability (OPLP) and 2. Query

by, Base Factor and Local Coherence Probability (BFLP). Both these

algorithms obtain good rankings by maintaining distributions over

candidates then sampling a candidate first and, given the candidate,

sampling an assessor according to a different distribution. We con-

duct extensive experiments on synthetic and real-world datasets

(The MIT Interview Dataset) and observe that the performance

of the proposed algorithm is significantly better than a variety of

baselines.

2 RELATEDWORK

We start by considering previous works that are most similar to

ours in terms of the setup. [17] considers a setup where the data is

in block-structured form like our setup (see Figure 1), and the goal

is to obtain a ranking that strictly uniformly dominates the random

policy. However, our setup differs from theirs because we assume a

statistical assessor model, and our goal is to obtain a ranking that

is as close as possible to the true ranking.

[12] work in a setup where a set of assessors rates a set of can-

didates. In addition to the rating, they also require a confidence

score associated with each rating. They assume that the candidate-

assessor graph is well connected and infer rankings based on prop-

agating the ratings over the graph. However, our setup translates

to a disconnected graph. While the extra queries in our setting

allow us to make the graph connected, the goal is not to make it as

connected as possible but to make it connected in such a way that

the rankings are good w.r.t the underlying assessor model.

[6] proposes the idea of human-in the loop idea for matrix com-

pletion, where the human annotation is done with matrix comple-

tion. The goal is to appropriately identify a subset of missing entries

for manual annotation and aims to lead to a better reconstruction

of the incomplete matrix with minimal human effort. The aim is

to actively complete a matrix. The main difference between their

setup and ours is that our goal is not to complete the matrix but to

get good estimates of row sums of the matrix, especially focusing

on the top few ranks. An entry of the matrix that may be critical

for completing the matrix (where the completion is measured w.r.t

the true matrix in some norm) may not necessarily be critical for

ranking as the other entries in the corresponding row might be

irrelevant.

We next discuss a few related works in matrix completion which

are relevant to our work. We describe them in more detail in the

preliminary section as needed.

[3–5, 9, 10, 15] solves the problem of recovering a low rank ma-

trix from partially known entries. One popular approach [4, 15]

solves the problem of recovering a low rank 𝑛 × 𝑛 matrix from 𝑦

uniformly sampled entries by solving a convex optimization prob-

lem. For a matrix with a rank that is not too large, if the number of

sampled entries 𝑦 obeys 𝑦 ≥ 𝐶𝑛1.2𝑟𝑙𝑜𝑔𝑛 for some positive numeri-

cal constant𝐶 , then with very high probability, most 𝑛 ×𝑛 matrices

of rank 𝑟 can be perfectly recovered. The convex program finds the

matrix with the minimum nuclear norm that fits the data. This work

is relevant to us. However, we do not have the luxury of uniformly

sampled entries, instead, we are working with block-structured

data.

[7] focuses on nuclear norm minimization to complete a ma-

trix from partial entries. The authors show that their algorithm

can recover an arbitrary 𝑛 × 𝑛 matrix of rank 𝑟 from 𝑂 (𝑛𝑟𝑙𝑜𝑔2 (𝑛))
revealed entries, provided that revealed entries are drawn propor-

tionally to the local row and column coherences (closely related

to leverage scores) of the underlying matrix. They further propose

a two-phase sampling algorithm that can perform nearly as well

as local-coherence sampling without requiring a priori knowledge

of the matrix coherence structure where the first phase uses uni-

formly sampled entries to estimate the coherence. However, we do

not have the luxury of uniformly sampled entries. The algorithms

developed in our paper make use of local coherence, albeit with a

different goal of identifying the most informative assessor once the

most informative candidate is identified.

3 PROBLEM SETTING AND PRELIMINARIES

We consider a scenario where 𝑁𝑂 ∈ N candidates need to be

ranked by a set of 𝑁𝐴 ∈ N assessors who are partitioned into
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𝑃 disjoint sets/panels. Each panel 𝑝 ∈ [𝑃] assesses a set of candi-
dates 𝑆𝑝 ⊊ [𝑁𝑂 ], where the candidate sets form a partition i.e.,

∪𝑝𝑆𝑝 = [𝑁𝑂 ] and ∀𝑝≠𝑞𝑆𝑝 ∩𝑆𝑞 = ∅. Let R ∈ R𝑁𝑂×𝑁𝐴
+ be the matrix

containing the ratings given by the panels to the candidates.

Goal: The goal of the learner is to use R and a small budget 𝐵 ∈ N
of extra (candidate, assessor) pairs that can be actively/adaptively
queried to output a good learned ranking over the candidates, espe-

cially top few ranks.

3.1 Performance Measure:

Let R∗ ∈ R𝑁𝑂×𝑁𝐴
+ be the true underlying rating matrix. Let 𝜎∗ be

the ranking/permutation obtained by sorting the row sums of R∗

in decreasing order. We measure the performance of any algorithm

that outputs a ranking 𝜎 using the following metrics:

(i) NDCG is a normalization of the Discounted Cumulative

Gain (DCG) measure widely used in practice [18]. DCG is a

weighted sum of the degree of relevancy of the ranked items.

The weight is a decreasing function of the rank (position) of

the candidate and is therefore called a discount. The discount

factor negatively impacts highly relevant items when they

are ranked low. NDCG normalizes DCG by the Ideal DCG

(IDCG), which is simply the DCGmeasure of the best ranking

result. Thus NDCG measure is always a number in [0, 1].

The logarithmic discount
1

log
2
(𝑖+1) , where 𝑖 is the candidate’s

rank, dominated the literature and applications. To focus on

the top𝑘 ranks the discount is set to zero for ranks larger than

𝑘 . Such NDCG measure is usually referred to as NDCG@k.

NDCG is computed as,

𝑁𝐷𝐶𝐺 =
𝐷𝐶𝐺

𝐼𝐷𝐶𝐺
where 𝐷𝐶𝐺 =

𝑁𝑂∑︁
𝑖=1

𝑔𝑖

log
2
(𝑖 + 1) (1)

where 𝑔𝑖 is a relevance score of the 𝑖
𝑡ℎ

ranked candidate.

(ii) Quality@k: In many settings, it is crucial to obtain the top 𝑘

ranked items accurately, regardless of their relative ranking

order. We define Quality@k as the percentage of predicted

top 𝑘 candidates that are also present in true top 𝑘 ranking.

3.2 Preliminaries

Matrix Completion: As every candidate is evaluated only by its

panel and not by the set of all assessors, R has multiple unknown

(candidate, assessor) pair values. There are many approaches to

predict these unknown values using matrix completion [3–5, 9,

10, 15]. Matrix completion concerns recovering/predicting missing

values in a matrix from a subset of its revealed entries. Most of the

matrix completion algorithms recover a low-rank approximation of

the given partially filled matrix. Nuclear norm minimization (NNC)

[4, 15] is an effective method of recovering such a low-rank matrix.

It gets low-rank approximation of a partially filled matrix, in our

case R by optimizing the following convex problem,

min

𝑅
∥𝑅∥∗ 𝑠 .𝑡 .𝑅𝑖 𝑗 = 𝑅∗𝑖 𝑗 ,∀(𝑖, 𝑗) ∈ Ω (2)

Where R∗ is an underlying true matrix, Ω is a set of all known

entries, and nuclear norm | |.| |∗ of a matrix is a sum of its singular

values. Nuclear norm minimization and similar methods assume

that (a) the observed elements are randomly and uniformly chosen

and (b) the underlying low-rank matrix is incoherent 𝑖 .𝑒 it prevents

the information of the row and column spaces of the matrix from

being too concentrated in a few rows or columns.

Local Coherence: If the matrix has row and column space with

low coherence, then each entry is expected to provide the same in-

formation. Consider the standard 𝑟𝑎𝑛𝑘 −1 coherent matrix example

stated in [4]; The matrix 𝑋 = 𝑒1𝑒
𝑇
𝑛 where 𝑒𝑖 is the 𝑖 -th canonical

basis vector in euclidean space has a single non-zero entry at (1, 𝑛).

𝑋 = 𝑒1𝑒
𝑇
𝑛 =


0 0 ... 0 1

0 0 ... 0 0

. . ... . .

. . ... . .

0 0 ... 0 0


Evidently, all the entries of 𝑋 do not have the same information.

hence it becomes crucial the waywe sample/query unknown entries

of such a coherent matrix.

In order to workaround assumption (b), [7] proposed a Two-phase
sampling strategy. They show us that the incoherence requirement

can be eliminated, provided the sampling probability of an element

being observed is dependent on the sum of the corresponding row

and column leverage scores (local coherence parameters) of the

underlying matrix. In the first phase, part of a given budget is

used to query (candidate, assessor) pairs uniformly at random. The

queried pairs help estimate local coherence parameters as shown

below,

𝑢𝑖 =
𝑁𝑂

𝑟




𝑈𝑇 𝑒𝑖




2 , 𝑣 𝑗 = 𝑁𝐴

𝑟




𝑉𝑇 𝑒 𝑗




2 (3)

where rank-𝑟 singular value decomposition (SVD) of R given by

𝑈 Σ𝑉𝑇
, 𝑢𝑖 is a local coherence of row 𝑖 and 𝑣 𝑗 is a local coherence of

column 𝑗 .


𝑈𝑇 𝑒𝑖



2
and



𝑉𝑇 𝑒 𝑗


2

are also referred as leverage scores
in matrix sparsification literature [1, 8, 14]. These parameters are

used to estimate local coherence distribution as demonstrated by

the equation below,

𝑃𝑖, 𝑗 = min

{
𝑐0
(𝑢𝑖 + 𝑣 𝑗 )𝑚 log

2 (𝑁𝑂 + 𝑁𝐴)
min{𝑁𝑂 , 𝑁𝐴}

, 1

}
(4)

Estimated distribution helps to actively query (candidate, asses-

sor) pair till one is out of budget.

4 MODELLING ASSUMPTIONS

We now present the exact assumptions we make on the underlying

matrix.

Assumption 1: Ground Truth Matrix Structure : The ground

truth matrix R∗ ∈ R𝑁𝑂×𝑁𝐴
+ where each assessor reviews every

candidate is assumed to be a low-rank matrix. In particular, we

assume that each assessor evaluates a candidate based on the𝑚

features i.e. the rank of R∗ is𝑚, and it can be factored as 𝐹 ∗𝑊𝑇
,



KDD OARS 2023, August 6-10, 2023, Long Beach, California - USA Tushar Phule, Pragalbh Vashishtha, and Arun Rajkumar

here ∗ denotes matrix multiplication. 𝐹 ∈ R𝑁𝑂×𝑚
captures the as-

sumption that each candidate has a different expertise level for each

feature and𝑊 ∈ R𝑁𝐴×𝑚
contains the weight given by the assessor

to each feature. As is common in matrix completion literature, we

will assume that the algorithm knows the rank (or an upper bound)

of the ground truth matrix. Based on the assumption, we consider

two models,

• Model 1: We assume that 𝑖-th column of 𝑊 follows a

multivariate Gaussian distribution with mean 𝜇𝑖 ∈ R𝑚 and

covariance 𝜎2I.

• Model 2: This model is inspired by [11] which makes the

following assumption:

Base Factor Assumption: Weassume that there exist𝑚 feature-

expertise base factor vectors i.e., rows of a matrix 𝐹 such

that the rest of the rows/feature-expertise vectors can be

obtained as some convex combination of these 𝑚 vectors.

Similarly, we assume that there exist𝑚 feature-weight base

factor vectors i.e. rows of a matrix𝑊 such that the rest of

the columns/feature-weight vectors can be obtained as some

convex combination of these𝑚 vectors.

Remark: The Model 2 is motivated by the candidate-assessor

scenario. The assumption made by [11] can be interpreted as the

existence of a small set of prototype candidates and assessors whose

combinations result in other candidates and assessors, respectively.

Proposition 1. Under the Model 2 (base factor model), the best-
ranked candidate (rank 1) will always be present in base factors.

Proof: Say 𝑓1, 𝑓2, ..., 𝑓𝑛 are rows of 𝐹 and𝑤1,𝑤2, ...,𝑤𝑛 are rows

of𝑊 , then the score of candidate 𝑖 is 𝑓𝑖 (
∑
𝑘 𝑤

𝑇
𝑘
). The term (

∑
𝑘 𝑤

𝑇
𝑘
)

is common for all candidates. Thus any candidate whose row is a

convex combination of base factors will have a score as a convex

combination of scores of base factor candidates and so the maxi-

mum is attained by a candidate present in base factors.

Assumption 2: Availability of extra budget : We assume that

we have a small extra budget 𝐵 ∈ N to actively query (candidate,

assessor) pairs in addition to the block diagonal entries that are

already known.

5 ALGORITHMS

The main goal of this section is to present algorithms that effi-

ciently utilize the budget adaptively to get close to the candidate’s

actual ranking. Towards this, we propose two algorithms 1. Query
by Candidate Probability-Local coherence Probability
(OPLP-Query) and 2. Query by Base Factors - Local
coherence Probability (BFLP-Query) with different strategies

to actively query (candidate, assessor) pairs. In the below sections,

we will discuss these algorithms in detail.

5.1 Algorithm: OPLP-Query
We propose the algorithm OPLP-Query as shown in Algorithm 1 for

the case where the ground truth rating matrix satisfies assumption

Algorithm 1 OPLP-Query

1: Input: Block-diagonal matrix R ∈ R𝑁𝑂×𝑁𝐴
+ budget: B.

2: while B > 0 do

3: Find the mean score of each candidate.

∀𝑖 𝑀𝑖 =

∑𝑁𝐴

𝑗=1
𝑅𝑖, 𝑗∑𝑁𝐴

𝑗=1
1(𝑅𝑖, 𝑗 ! = 0)

4: Find the candidate probabilities,

∀𝑖 𝑃O [𝑖] =
𝑀𝑖∑𝑁𝑂

𝑗=1
𝑀𝑗

5: 𝑜
id
← Sample candidate based on 𝑃O.

6: Find the local coherence probability matrix (𝑃𝐿𝐶 ) for R using

Algorithm 2.

7: Find assessor probabilities for the sampled candidate (𝑜𝑖𝑑 )
row,

∀𝑖 𝑃A [𝑖] =
𝑃LC [𝑜𝑖𝑑 ] [𝑖]∑𝑁𝐴

𝑗=1
𝑃LC [𝑜𝑖𝑑 ] [ 𝑗]

8: 𝑎
id
← Sample assessor according to 𝑃A

9: Query (𝑜
id
, 𝑎

id
) pair and update matrix R

10: Update available budget, B = B − 1
11: end while

12: 𝑍 ← Complete matrix using Nuclear norm minimization by

solving Equation 2.

13: Evaluate average score of the candidate.

∀𝑖 𝑀𝑖 =

∑𝑁𝐴

𝑗=1
𝑍𝑖, 𝑗

𝑁𝐴

14: 𝜎 ← Rank the candidates based on the decreasing average
score𝑀 .

15: Output: 𝜎 ← Final ranking of the candidates

1 described in Section 4. The algorithm first identifies the candidate

to query, followed by an assessor who will assess the candidate.

The algorithm maintains a probability distribution over candidates

where a higher probability is assigned to candidates with better-

estimated rank. As the algorithm accumulates information about

a currently higher-ranked candidate, the estimated score of the

candidate will get closer to its actual score. If the selected candidate

is truly top-ranked, it will continue to stay at the top of the estimated

ranking as well. If not, eventually its rank will slide down closer to

its actual rank.

Specifically, let 𝑃O ∈ [0, 1]𝑁𝑂
be the vector of probability scores

for candidates where the probability for the 𝑖𝑡ℎ candidate 𝑃𝑖
O
is

proportional to the average of the assessor scores given to the

candidate. The algorithm first samples an candidate 𝑜
id
using 𝑃O.

Next, it needs to select the assessor for the sampled candidate’s

assessment. To do this, the algorithm calculates the local coherence

probability matrix (𝑃LC) using Algorithm 2. We concentrate on

the selected candidate (𝑜𝑖𝑑 ) row and normalize the local coherence

scores to obtain the assessor probability vector 𝑃A. It then samples

an assessor 𝑎
id

using 𝑃A who has not assessed 𝑜
id
, the chosen

candidate before. The algorithm then queries the pair (𝑜
id
, 𝑎

id
) and

updates score in R.
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Algorithm 2 Compute Local Coherence Matrix (Ref. [7])

Input: Round 1 evaluation matrix R ∈ R𝑁𝑂×𝑁𝐴
, rank parameter

𝑚

Initialize: Universal constant 𝑐0 = 0.1

1 : Compute the rank-𝑚 SVD of R,𝑈 Σ𝑉𝑇

2 : Estimate the local coherence’s by 𝑢𝑖 =
𝑁𝑂

𝑚



𝑈𝑇 𝑒𝑖


2

and

𝑣𝑖 =
𝑁𝐴

𝑚



𝑉𝑇 𝑒 𝑗


2

3 : Calculate the local coherence probability for

(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖 , 𝑎𝑠𝑠𝑒𝑠𝑠𝑜𝑟 𝑗 ) pair as,

𝑃𝑖, 𝑗 = min

{
𝑐0
(𝑢𝑖 + 𝑣 𝑗 )𝑚 log

2 (𝑁𝑂 + 𝑁𝐴)
min{𝑁𝑂 , 𝑁𝐴}

, 1

}
Output: Local coherence probability matrix 𝑃𝐿𝐶

To calculate the candidate probabilities for the subsequent query,

use the updated R as input. Once the algorithm runs out of budget,

it completes the updated matrix R by solving the nuclear norm

minimization problem presented in Equation 2. We used the nuclear

normminimization algorithm of [2] to complete the updated matrix

R. However, any matrix completion sub-routine can be used for the

same. Let 𝑍 be the completed matrix. We find the average score

vector𝑀 of candidates using 𝑍 , and rank the candidates as per their

average scores.

Remark: The main idea is that once the candidate who is most

likely the top ranked is selected, the assessor who will give the

most information to validate the candidate’s choice is chosen. A

natural way to quantify this information is using local coherence.

Note that the chosen pair may not necessarily be the one that has

the highest local coherence in the matrix. As the algorithm does

not need to complete the entire matrix reliably but only needs to

get good rankings at the top, it queries for the pair that gives the

most information, given that the candidate is likely to be at the top

of the ranking.

5.2 Algorithm: BFLP-Query
We propose a different algorithm BFLP-Query shown in Algorithm

3. It assumes that the ground truth follows Model 2 described in

Section 4. We describe this algorithm below.

BFLP-Query starts by completing the incomplete input matrix

R using nuclear norm minimization [2]. Let 𝑍 be the completed

matrix. Let 𝑆 be the simplex form of 𝑍 , where each row 𝑖 of 𝑆 sat-

isfies {𝑆𝑖 ∈ [0, 1]𝑁𝐴
: ∥𝑆𝑖 ∥1 ≤ 1}. According to the assumption

of Model 2, there are𝑚 base row factors which the algorithm first

attempts to find. To do this, the algorithm partially makes use of the

approach developed in [11]. The goal of [11] was to eliminate rows

and columns to obtain the entry with the maximum value in a ma-

trix that follows Model 2. However, we wish to rank entries based

on row sums. Thus, BFLP-Query does only row elimination to find a

set of prospective candidates. Let Π𝑚 ( [𝑁𝑂 ]) be the set of all𝑚 sub-

sets of 𝑁𝑂 candidates. From all possible𝑚−subsets, the algorithm
identifies 𝐼∗ - a prospective set of base row factors of 𝑆 . Proposition 1

Algorithm 3 BFLP-Query

1: Input: Block-diagonal matrix R ∈ R𝑁𝑂×𝑁𝐴
, budget: B, rank

parameter:𝑚

2: 𝑍 ← Complete input matrix R by solving NNC Equation 2.

3: while B > 0 do

4: 𝑆 ← Simplex form of matrix 𝑍 , where 𝑖𝑡ℎ row of 𝑆 , 𝑆𝑖 is

{𝑆𝑖 ∈ [0, 1]𝑁𝐴
: ∥𝑆𝑖 ∥1 ≤ 1}

5: 𝐼1 ← Choose any𝑚−rows from 𝑆

6: 𝐽1 ← Choose any𝑚−columns from 𝑆

7: 𝐼∗ = 𝐼1
8: for all 𝐼 ∈ Π𝑚 ( [𝑁𝑂 ]) do
9: if 𝑑𝑒𝑡2 (𝑆 (𝐼 , 𝐽1)) > 𝑑𝑒𝑡2 (𝑆 (𝐼∗, 𝐽1)) then
10: 𝐼∗ = 𝐼

11: end if

12: end for

13: 𝑃LC← Calculate local coherence probabilities for the candi-

dates using Algorithm 2.

14: repeat

15: (𝑜
id
, 𝑎

id
) ← Sample 1 entry from 𝐼∗ using local coherence

probabilities.

16: until (𝑜
id
, 𝑎

id
) pair not queried before

17: Query (𝑜
id
, 𝑎

id
) and update matrix R

18: Update available budget. B = B − 1
19: 𝑍 ← Complete input matrix 𝑅 using NNC by solving Equa-

tion 2.

20: end while

21: Calculate the average score of the candidate

∀𝑖 𝑀𝑖 =

∑𝑁𝐴

𝑗=1
𝑍𝑖, 𝑗

𝑁𝐴

22: 𝜎 ← Ranking the candidate based on the decreasing 𝑠𝑐𝑜𝑟𝑒 .

23: Output: 𝜎 ← Final ranking of the candidates

shows that if data follows Model 2, then the best-ranked candidate

necessarily must belong to 𝐼∗, thus making it a good set of candi-

dates to zoom into. Once a smaller set 𝐼∗ of candidates is identified,
similar to OPLP-Query, the BFLP-Query algorithm calculates local

coherence probability score matrix 𝑃LC ∈ [0, 1]𝑁𝑂×𝑁𝐴
using Algo-

rithm 2. It then samples one (𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝑎𝑠𝑠𝑒𝑠𝑠𝑜𝑟 ) pair according
to the computed local coherence probabilities where the candidate

belongs to 𝐼∗ and 𝑎
id
has not assessed 𝑜

id
in previous rounds. It

queries (𝑜
id
, 𝑎

id
) pair and updates the scores in R and completes

the updated matrix. The procedure is repeated till the algorithm

runs out of budget. The final ranking of candidates is determined

by computing the average score of each candidate 𝑖 .𝑒 averaging the

rows using 𝑍 .

Remark 1: In our setting, Assumptions required for the standard

matrix completion (see Section 3.2) need not always hold. Figure

1 shows that matrix completion assumption (a) does not hold in

our setting as samples are not uniformly and randomly chosen but

have a disjoint diagonal block structure. Hence standard matrix

completion techniques fail in our settings.
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(a) Synthetic Dataset 1 (Model 1)
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(b) Synthetic Dataset 2 (Model 2)
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(c) The MIT Interview Dataset
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(d) Synthetic Dataset 1 (Model 1)
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(e) Synthetic Dataset 2 (Model 2)
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(f) The MIT Interview Dataset

Figure 2: first row - Algorithms vs 𝑁𝐷𝐶𝐺@25, Second row - Algorithms vs 𝑄𝑢𝑎𝑙𝑖𝑡𝑦@25: The average results after 100 iterations

of the proposed algorithms are compared with a set of baseline algorithms along with error bars. (baseline#+NNC) is nuclear
norm minimization over baseline#.

Remark 2:We note that the sampling strategy proposed in [7]

does not directly help in our setting, primarily because the small

budget does not allow us to have a two-phase sampling strategy.

Moreover, if we use the block diagonal entries as a substitute for

phase 1 and evaluate the local coherence score using the known

entries along the block diagonal, there is a chance that the evaluated

local coherence score is inaccurate, as the sampling requirement

stated in [7] requires the entries to be sampled uniformly at random

which is not true in our case. Furthermore, and perhaps more im-

portantly, the goal of [7] is to complete the entire matrix accurately,

whereas our goal is to complete it well enough so that the obtained

rankings are good at the top of the list.

6 EXPERIMENTS

We now present the experimental setup, performance metrics, and

results on different datasets. We have tested our Algorithms on two

synthetic datasets in Section 6.2 and The MIT interview real-world

dataset in Section 6.4.

Performance Metric:

(i) NDCG@k(Normalized Discounted Cumulative Gain) measures

the ranking quality of the algorithm by penalizing inaccu-

rately ranked candidates. We used Equation 1 to calculate

NDCG score.

(ii) Quality@k:The Percentage of predicted top 𝑘 candidates

that are also present in true top 𝑘 ranking.

6.1 Baseline Algorithms:

We compare our results with,

(i) Blk-SA (baseline 1): Final score of a candidate is the average
score given by the respective candidate’s panel.

(ii) Blk-rand-Bgt (baseline 2) : Actively query budget 𝐵 ∈ N
(candidate, assessor) pairs uniformly.

(iii) Blk-Lc-Bgt (baseline 3) : Using equation (3) calculate the lo-

cal coherence probability score [7] for each (candidate, asses-

sor) pair and sample B pairs using these probabilities. Along

with the panel’s initial assessment score, newly queried en-

tries were used to calculate the average score of the candi-

date.

(iv) Blk-rand-Lc-Bgt (baseline 4) : Query B
2
(candidate,assessor)

pairs uniformly, and
B
2
pairs using local coherence probabil-

ity.
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(a) Blk-SA (baseline 1) - Model 1
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(b) OPLP-Query - Model 1
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(c) BFLP-Query - Model 1
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(d) Blk-SA (baseline 1) - Model 2
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(e) OPLP-Query - Model 2
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(f) BFLP-Query - Model 2

Figure 3: Predicted Rank vs True Rank: The plot shows the deviation of the Predicted rank from the True rank for the, first row
- synthetic dataset 1(Model 1), second row - synthetic dataset 2 (Model 2).

In addition, we applied the matrix completion technique on

each baseline algorithmmentioned above to predict scores of

(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖 , 𝑎𝑠𝑠𝑒𝑠𝑠𝑜𝑟 𝑗 ) pair where 𝑎𝑠𝑠𝑒𝑠𝑠𝑜𝑟 𝑗 has not scored
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖 . We used Nuclear Norm Minimization based ma-

trix completion method for our experiments [2, 4, 15].

6.2 Data generation of Synthetic Datasets

Experimental Setup: We considered 𝑁𝑂 = 200 candidates as-

sessed by five panels. Each panel has six assessors, and each candi-

date is evaluated based on𝑚 features.

DataGeneration for Synthetic Dataset 1: In this experiment, we

generate data according to model 1. candidates are assigned a skill

score for each feature, where scores are chosen from𝑈𝑛𝑖 𝑓 ( [1, 10]).
Let 𝐹200×𝑚 denote a candidate’s skill score for each feature. Let

𝑊30×𝑚 denote a weight that each assessor gives to each feature. The

𝑖-th column of𝑊 is sampled fromN(𝜇𝑖 , 𝜎2I) where we fix 𝜎 = 3 in

our experiments. 𝜇 for each feature is chosen from𝑈𝑛𝑖 𝑓 ( [1, 10]).
R∗ = 𝐹𝑊𝑇

indicates the final score given by each assessor to each

candidate when every assessor assesses every candidate. We as-

sume R∗ as a low-rank matrix of rank 3. R∗ is a ground truth

complete matrix. In our scenario, the candidate is not assessed by

each assessor but by its panel members only; hence, we will mask

(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖 , 𝑎𝑠𝑠𝑒𝑠𝑠𝑜𝑟 𝑗 ) pair of R∗ when 𝑎𝑠𝑠𝑒𝑠𝑠𝑜𝑟 𝑗 has not assessed

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖 . After masking such pairs, we get our block diagonal

structured assessment data R ∈ R200×30.

Data generation for Synthetic Dataset 2: In this experiment,

we generate data according to model 2. Here again, R∗ = 𝐹 ∗𝑊𝑇

where 𝐹 ∈ R200×𝑚 and𝑊 ∈ R30×𝑚 . To generate 𝐹 and𝑊 , we

selected𝑚 candidates from𝑈𝑛𝑖 𝑓 ( [1, 200]) and assigned skill score

for𝑚 features sampled from the 𝑈𝑛𝑖 𝑓 ( [1, 10]). These are the base
row factors. We then generate 200−𝑚 rows by taking random convex
combinations of these base row factors. We generate𝑊 similarly.

6.3 Analysis of Results over Synthetic Datasets

Comparison with baseline Algorithms : Figure 2a, 2b shows

the comparison of the several baseline algorithms considered and

the proposed algorithms for the nDCG@25 metric and the Figure 2d,

2e show the comparison of the several baseline algorithms consid-

ered and the proposed algorithms for theQuality@25 metric. As can

be seen, just having an extra budget does not help to improve the

rankings. Choosing meaningful (candidate, assessor) pairs is crucial,

which helps obtain good rankings. Both the proposed algorithms

produce superior results than all the baseline algorithms considered.

Figure 2 shows that standard matrix completion (baseline 1 +

NNC) fails in our settings as assumptions required for the standard

matrix completion (see Section 3.2) need not always hold. Figure

1 shows that matrix completion assumption (a) does not hold in

our setting as samples are not uniformly and randomly chosen but

have a disjoint diagonal block structure.

Effect of budget: We observe the Effect of budget on several

algorithms in Figure 4. We can observe apparent performance en-

hancement when we have more budget in hand. It shows that

the proposed algorithms perform better than just using budget

by uniform and random sampling. In particular, we observe that

BFLP-Query shows fast convergence than the rest of the algorithms.

Quality of Entire Ranking: Figure 3a and 3d show results for

baseline 1. Error in predicted rankings is high in this case. It can
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(c) The MIT Interview Dataset.

Figure 4: nDCG@25 vs budget: The plot shows the performance of the proposed algorithms and the Baseline algorithm for the

different budgets in hand. (To maintain plot readability, error bars for top performing baselines showed in figure.)

be seen from Figure 3, error significantly reduces for our proposed

algorithms OPLP-Query and BFLP-Query. Deviation of predicted

rank from the true rank is significantly lesser for all other baselines

as well. The results for the other baselines can be found in the

GitHub repository mentioned in Section 8.

6.4 Experiments on "MIT Interview Dataset"

(Real Data):

The MIT Interview Dataset [13] has audio-video recordings of 138

mock job interviews conducted by professional career counselors

of 69 undergraduate students. Every student gave two different

interviews 𝑖 .𝑒 total of 138 interviews. The dataset has Amazon Me-

chanical Turk ratings of each interview, where human annotators

judged each interview based on 16 different features. Total of nine

assessors judged each student. The total score given by the assessor

is the sum of the score given to each feature. Data collection and

evaluation procedure is mentioned in [13]. In this dataset, each

interviewer assessed every candidate 𝑖 .𝑒 we have R∗ ∈ R138×9+ .

However, in practice, the assessors are typically divided into pan-

els and each panel assesses a subset of candidates. To capture this

scenario, we divided the 9 assessors into 4 disjoint panels such that

three panels have 2 panelists each and one panel has 3 panelists.

We assigned two panels to 34 students, and the other two panels

were assigned to 35 students each. We refer to this block diagonal

matrix as R. All our algorithms were given R as input and were

allowed to query additional (candidate, assessor) pairs not in R but

in R∗. We compare the predicted rankings with the actual rankings

obtained from the R∗ using NDCG and Quality metrics. We now

present the results of this dataset.

Comparison with baseline Algorithms : Figure 2c shows the

comparison of OPLP-Query and BFLP-Query with baseline algo-

rithms based on nDCG@25 metric and Figure 2f shows the com-

parison of proposed algorithms with baseline algorithms based

on Quality@25 metric. We assumed to have an extra budget of
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Table 1: Effect of Hyper Parameter 𝑘 : Experimental results based on the top 20 candidate rankings(Smaller 𝑘) and top 50

candidate rankings(Higher 𝑘). (baseline#+NNC) is nuclear norm minimization over baseline#.

Results for 𝑘 = 20 (Smaller 𝑘) Results for 𝑘 = 50 (Higher 𝑘)

Synthetic Dataset 1 Synthetic Dataset 2 Synthetic Dataset 1 Synthetic Dataset 2

Algorithm Quality

@20(%)

NDCG

@20

Quality

@20(%)

NDCG

@20

Quality

@50(%)

NDCG

@50

Quality

@50(%)

NDCG

@50

Blk-SA (baseline 1) 40.00 0.3419 68.00 0.4796 60.00 0.6226 68.00 0.755

Blk-rand-Bgt (baseline 2) 48.55 0.3925 69.30 0.4999 63.40 0.6630 69.08 0.7454

Blk-Lc-Bgt (baseline 3) 50.55 0.4046 68.10 0.4922 64.04 0.669 67.80 0.7318

Blk-rand-Lc-Bgt (baseline 4) 49.30 0.3959 69.40 0.4959 63.33 0.661 68.76 0.736

baseline 1 + NNC 44.50 0.3615 47.50 0.3472 48.80 0.534 39.16 0.5010

baseline 2 + NNC 74.50 0.6012 71.43 0.5234 82.20 0.884 81.56 0.837

baseline 3 + NNC 73.65 0.5970 71.83 0.5248 79.36 0.8612 80.24 0.8364

baseline 4 + NNC 74.81 0.6089 72.01 0.5235 81.16 0.8759 81.32 0.8372

OPLP-Query 79.60 0.6580 76.23 0.5796 86.40 0.9172 83.64 0.8545

BFLP-Query 81.20 0.6650 80.43 0.6021 89.00 0.9231 88.67 0.9270

Table 2: The baselines show notable discrepancies in ranking the top ten candidates on the MIT Interview data. However, the

algorithms OPLP-Query and BFLP-Query outperform these baselines. OPLP-Query places just two candidates beyond the 25th

position, while BFLP-Query successfully includes all true top 10 candidates in the predicted top 20 list. (baseline#+NNC) is
nuclear norm minimization over baseline#.

Algorithm Analysis of predicted ranks of true top 10 candidates

Baseline 1 Five candidates are ranked beyond 40th position.

Baseline 2 Four candidates are ranked beyond 60th position.

Baseline 3 Four candidates are ranked beyond 60th position.

baseline 4 Four candidates are ranked beyond 70th position.

baseline 1 + NNC Three candidates are ranked beyond 100th position.

baseline 2 + NNC Four candidates are ranked beyond 25th position (One ranked beyond 75)

baseline 3 + NNC Three candidates are ranked beyond 40th position.

baseline 4 + NNC Four candidates are ranked beyond 25th position (One ranked beyond 50)

OPLP-Query Two candidates ranked beyond 25th position.All other ranked under 20th position

BFLP-Query All true top 10 candidates lie in predicted top 20 list

B = 70 for this set of experiments. Figure 2c and Figure 2f shows

that OPLP-Query and BFLP-Query clearly outperform baseline al-

gorithms which do not use extra 𝑏𝑢𝑑𝑔𝑒𝑡 and it is marginally better

than other baseline algorithms having the luxury of extra budget

and BFLP-Query outperforms all the baseline algorithms consid-

ered.

Need for Extra budget : Figure 5 shows that the widely used base-
line algorithm Blk-SA (Simple Averaging) ranks only 30% of true top

10 candidates accurately. Another baseline algorithm baseline1+
NNC which does not use any extra budget but completes the matrix

using only block diagonal entries do not show any improvement

and it also ranks only 30% of true top 10 candidates accurately.

While OPLP-Query ranks 50% of true top 10 candidates accurately.

BFLP-Query clearly outperforms these baseline algorithms and

ranks 70% of true top 10 candidates accurately.

Figure 5 shows that the predicted ranks by baseline algorithms -

Blk-SA (baseline 1) and baseline1+ NNC, are even beyond rank 50

for true top 10 candidates. While every student in the true top 10

rank list is present in the predicted top 20 rank list of BFLP-Query.
Moreover, most of the candidates predicted by OPLP-Query are in

the top 20 list. Table 2 compares results for all the baselines. We

can observe that the proposed algorithms drastically reduce the

deviation of the predicted rankings from the actual rankings.
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Figure 5: Experiment on MIT Interview Dataset : (Predicted
Rank vs True Rank): The plot shows the performance of the

different baseline and proposed algorithms to retrieve True

Top 10 Candidates. All candidates below dotted Green line are

predicted correctly in the Top 10. Candidates below dotted
red line and above dotted green line are close to their actual

ranking as they ranked below rank 20. Candidates above

dotted red line are considered to be ranked poorly.

6.5 Further Experiments

Effect of Higher Number of Candidates: We analysed results

when number of candidates are higher. We evaluated the proposed

algorithms for the scenario where 500 candidates are assessed by

30 assessors. This is a 2.5 times larger matrix in terms of number of

entries than the 200 ∗ 30 reported in the Section 6.2. Results shows

that proposed algorithms outperforms baselines for scenarios where

a higher number of candidates needs to be evaluated. The results

can be found in the GitHub repository mentioned in Section 8.

Effect of Hyper parameter 𝑘:

Smaller 𝑘 . : We observe the results for the proposed methods when

𝑘 = 20. The Table 1 displays the performance evaluation of several

algorithms based on the top 20 candidate rankings which clearly

demonstrates that the proposed methods perform better than the

baselines for smaller value of 𝑘 .

Higher 𝑘 . : We examined the outcomes of the proposed approaches

at a value of 𝑘 = 50. The performance evaluation of various algo-

rithms, considering the top 50 candidates, is presented in Table 1.

These results demonstrate that the proposed algorithms surpass

several baseline methods, even when evaluating performance at

the top 50 candidate rankings (with a higher value of 𝑘).

7 CONCLUSION

We considered the problem of ranking a set of candidates which

are rated by a disjoint set of assessors under two natural models

for human assessors. We proposed two novel algorithms for the

same, and our extensive experimental evaluation shows the efficacy

of the proposed algorithms. Future work includes showing formal

guarantees for the extra budget needed to obtain reliable rankings.

Another interesting direction is to consider the multi-armed ban-

dits variant of this problem where the same (candidate, assessor)

pair might be sampled multiple times to get stochastic outcomes.

However, unlike the standard bandit’s setup, the goal here would be

to identify the top 𝑘 candidates, which would make it a challenging

problem.

8 CODES FOR REPRODUCING RESULTS

The datasets and codes are available here.
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