SECURE AND PRIVATE RECOMMENDATION

Tommaso Di Noia

Online and Adaptive Recommender Systems (OARS) Workshop @ KDD'22 August 14, 2022

Motivation

SECURITY AND PRIVACY IN RS: WHY WE CARE ABOUT

- Users are at the center of the recommendation task
- Attacking a recommendation engine has a direct consequence on (potentially) all the users of the system
- Users' preferences are very sensitive knowledge

SECURITY AND PRIVACY: WHY WE CARE ABOUT

CIFAR Pan-Canadian Artificial Intelligence Strategy ARTIFICIAL INTELLIGENCE

• • •

WHAT THEY HAVE IN COMMON

SECURITY: protect users final recommendations against attacks

PRIVACY: protect users' data against attacks and improper use

Security

SECURITY: YOU MAY KNOW THE PANDA

"panda"

All data are drawn from the same distribution used in training time.

SINF

Politecnico

The samples are **indepenent** from each other.

«Such assumptions [...] rule out the possibility that an adversary could alter the distribution at either training time or test time.»

[Ian Goodfellow et al. Making Machine Learning Robust Against Adversarial Inputs. Communications of the ACM, July 2018]

ADVERSARIAL EXAMPLES IN RS

Simulation of Targeted Adversarial Attacks against Multimedia Recommender Systems can push low recommended product categories even **3 times more recommended** by **perturbing** product images in a **human-imperceptible way**.

[Di Noia, Tommaso, Daniele Malitesta, and Felice Antonio Merra. "TAaMR: Targeted Adversarial Attack against Multimedia Recommender Systems." the 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-DSML'20). 2020.]

ADVERSARIAL PERSPECTIVE

Supervised learning (classification) problem

$$\arg \max_{\Delta_{adv}} J(\Omega, x + \Delta_{adv}, y) \quad s.t., \|\Delta_{adv}\|_{p} \leq \epsilon$$

$$\int_{\mathcal{A}_{adv}} \int_{\mathcal{A}_{adv}} \int$$

Algorithms that aim to find such adversarial perturbations are referred to as adversarial attacks.

ADVERSARIAL TRAINING [GOODFELLOW ET AL., ICLR'15]

Including adversarial samples in the **training** of a model makes it **more robust**. The objective function of the model **adversarially-trained** is:

$$\arg\min_{\Omega}\max_{\Delta_{adv}}J(\Omega, x, y) + \lambda J(\Omega, x + \Delta_{adv}, y)$$

Adversarial Regularization term

Adversarial training provides better <u>generalization performance</u> [Miyato et al., ICLR'17]

COUNTERMEASURES

Proactive countermeasures

- Adversarial Training [Goodfellow et al., ICLR '15]
 - Additional training epochs with adversarial examples
- Defensive Distillation [Papernot et al., ISS'16]
 - Adapt distillation to increase the robusteness of the network
- Robust Optimization [Madry et al., ICLR'18]
 - design robust DNN to prevent a speciic class of adversarial examples
- **Reactive** countermeasures
 - Adversarial Detecting
 - Input Reconstruction
 - Network Verification

Security and RS

SINF

Politecnico

Attacks based on content (Di Noia'20, Tang'19)

HAND-CRAFTED SHILLING ATTACKS

fake users

Problem: Given a U-I matrix, the goal is to add a small number of fake users, where each new profile can have maximum 'C' ratings.

Different attack types: Constructed based on the composition a of user profile. (e.g, random, popular, bandwagon, love-hate)

IS				I_F			I_T		
$i_{s}^{(1)}$		$i_s^{(lpha)}$	$i_f^{(1)}$		$i_f^{(\phi)}$	$i_{\emptyset}^{(1)}$		$i_{\emptyset}^{(\chi)}$	i _t

Gunes, I., Kaleli, C., Bilge, A., & Polat, H. (2014). Shilling attacks against recommender systems: a comprehensive survey. *Artificial Intelligence Review*,'14.

HAND-CRAFTED SHILLING ATTACKS AGAINIST RS

Recent advances focuses on:

Goal (attack): Study the Impact of Dataset Characteristics on the efficacy of most popular CF shilling attacks

$$\mathbf{y} = \epsilon + \theta_0 + \theta_d \mathbf{X}_d + \theta_c \mathbf{X}_c$$

$$x_1 = \log_{10}\left(\frac{|\mathcal{U}| \cdot |\mathcal{I}|}{sc}\right) \quad x_4 = 1 - 2\sum_{i=1}^{|\mathcal{I}|} \left(\frac{|\mathcal{I}| + 1 - i}{|\mathcal{I}| + 1}\right) \times \left(\frac{|\mathcal{K}_i|}{|\mathcal{K}|}\right)$$

$$x_2 = \log_{10}\left(\frac{|\mathcal{U}|}{|\mathcal{I}|}\right) \quad x_5 = 1 - 2\sum_{u=1}^{|\mathcal{U}|} \left(\frac{|\mathcal{U}| + 1 - u}{|\mathcal{U}| + 1}\right) \times \left(\frac{|\mathcal{K}_u|}{|\mathcal{K}|}\right)$$

$$x \to \text{data characteristics}$$

$$x_3 = \log_{10}\left(\frac{|\mathcal{K}|}{|\mathcal{U}| \times |\mathcal{I}|}\right) \quad x_6 = \sqrt{\frac{\sum_{i=1}^{|\mathcal{K}|} (r_i - \bar{r})^2}{|\mathcal{K}| - 1}}$$

[Yashar Deldjoo, Tommaso Di Noia, Eugenio Di Sciascio, Felice Antonio Merra. How Dataset Characteristics Affect the Robustness of Collaborative Recommendation Models. SIGIR 2020: 951-960]

KNOWLEDGE-AWARE SHILLING ATTACK

М	otric	LibraryThing						Yahoo!Movies											
	$D \otimes 10$	U	ser-kN	N	l It	em-kN	N		\mathbf{MF}		U	ser-kN	Ν	It	k m - k N	IN		\mathbf{MF}	
		1%	2.5%	5%	1%	2.5%	5%	1%	2.5%	5%	1%	2.5%	5%	1%	2.5%	5%	1%	2.5%	5%
	baseline	.074	.157	.230	.281	.457	.557	.767	.900	.942	.189	.366	.449	.329	.508	.598	.410	.580	.702
Dnd	CS-1H	.068*	.143*	.213*	.271*	.441*	.558	.778*	.898	.940	.202	.372	.455*	.336	.522*	.609*	.430*	.607*	.707
nna	OS-1H	.081*	.170*	.250*	.290*	.467*	.576*	.786*	.902	.944	.217*	.394*	.477*	.345*	.535*	.622*	.446*	.635*	.742*
	FS-1H	.072	.154	.229	.280	.455	.570*	.786*	.901	.942	.213*	.381*	.468*	.338*	.530*	.619*	.442*	.623*	.728*
	baseline	.502	.518	.518	.874	.952	.978	.955	.987	.995	.604	.608	.605	.888	.930	.958	.956	.967	.980
Т_Н	CS-1H	.502	.518	.518	.876*	.953	.979	.957	.987	.994	.604	.608	.605*	.889	.932	.957	.956	.967	.979
	OS-1H	.502	.518	.518	.870*	.950*	.974*	.955*	.986	.994	.604	.605	.605	.887	.933	.955*	.956	.967	.979
	FS-1H	.502	.518	.518	.874	.951	.977	.955	.987	.993	.604*	.608	.605	.888	.933	.956	.956	.967	.979
	baseline	.086	.197	.285	.313	.508	.605	.803	.915	.951	.233	.416	.494	.374	.574	.654	.489	.685	.788
Ave	CS-1H	.081*	.187*	.269*	.301*	.507	.621*	.814*	.915	.950	.220*	.399*	.479*	.357*	.554*	.639*	.467*	.652*	.744*
Avg	OS-1H	.093*	.202	.289	.313	.507	.610*	.810	.911	.948	.237	.412	.494	.371	.563*	.646*	.475	.656*	.754*
	FS-1H	.084	.190*	.272*	.305*	.504	.614*	.811	.911	.946*	.215*	.397*	.473*	.350*	.547*	.634*	.448*	.627*	.729*

Anelli, V. W., Deldjoo, Y., Di Noia, T., Di Sciascio, E., & Merra, F. A. Sasha: Semantic-aware shilling attacks on recommender systems exploiting knowledge graphs. ESWC'20.

ADVERSARIAL RS CHALLENGES

- Unlike **images** composed of **continous features**, the input to RS are discrete (rating, (u,i,j) in BPR)
- 2. Adversarial examples on images aim to be **UNNOTICEABLE**.

Where can we add adversarial noise?

ADVERSARIAL RS

[Deldjoo, Y., Di Noia, T., & Merra, F. A. (2021). A survey on adversarial recommender systems: from attack/defense strategies to generative adversarial networks. ACM Computing Surveys (CSUR), 54(2), 1-38.]

ADVERSARIAL NOISE

Adding adversarial noise on CF model paramters:

- Adds adversarial noise to the model
 paramters of BPR-MF
- Compares adversarial v.s. random noise
- Applies adversarial training as a defense mechnasim

ADVERSARIAL PERSONALIZED RANKING

Adversarial Perturbation on each embedding vector of user and item

$$\left(\mathbf{p}_{u}+\Delta_{u}\right)^{T}\left(\mathbf{q}_{i}+\Delta_{i}\right)$$

ADVERSARIAL PERSONALIZED RANKING

Adversarial Perturbation on each embedding vector of user and item

$$\left(\mathbf{p}_{u}+\Delta_{u}\right)^{T}\left(\mathbf{q}_{i}+\Delta_{i}\right)$$

The impact of applying adversarial perturbation

reduction of NDCG@100							
	$\epsilon = 0.5$	$\epsilon = 1$	$\epsilon = 2$				
Dataset	BPR-MF	BPR-MF	BPR-MF				
Yelp	-22.1%	-42.7%	-63.8%				
Pinterest	-9.5%	-25.1%	-55.7%				
Gowalla	-26.3%	-53.0%	-78.0%				

ADVERSARIAL PERSONALIZED RANKING

The impact of adversarial v.s. random noise on BPR-MF:

- adversarial perturbations: NDCG decreases -21.2%
- random perturbations: NDCG decreases -1.6%

DEFENSE AGAINST ADVERSARIAL SAMPLES

- Goal: Build ML models that can make robust prediction even in prescence of adversial examples.
- Main defensive pproaches:
 - (i) increasong robustness,
 - Robust optimization
 - Adversarial training (regularization)
 - Robust gradient decent
 - Certified robustness
 - Defenise destillation
 - (ii) detection

Most Popular in RecSys

ADVERSARIAL PERSONALIZED RANKING [XIANGNAN HE ET AL., SIGIR '18]

Do Adversarial training improve the robustness?

	NDCG@100							
	$\epsilon =$	0.5	$\epsilon =$	= 1	$\epsilon = 2$			
Dataset	BPR-MF	APR	BPR-MF	APR	BPR-MF	APR		
Yelp	-22.1%	-4.7%	-42.7%	-12.5%	-63.8%	-31.0%		
Pinterest	-9.5%	-2.6%	-25.1%	-7.2%	-55.7%	-23.4%		
Gowalla	-26.3%	-2.9%	-53.0%	-13.2%	-78.0%	-29.2%		

ITERATIVE ADVERSARIAL NOISE

Adding **iterative** adversarial noise on CF model paramters:

$$\Theta_0^{adv} = \Theta + \Delta_0 \qquad \Theta_1^{adv} = Clip_{\Theta,\epsilon} \left\{ \Theta_0^{adv} + \alpha \frac{\Pi}{\|\Pi\|} \right\} \text{ where } \Pi = \frac{\partial \mathcal{L}(\Theta + \Delta_0)}{\partial \Delta_0}$$

 Iterative Perturbation can make the recommendation model worse than a random model

 The APR defense strategy limitates but does not protect from MSAP

• Random --- BPR-MF - · AMF --- FGSM ($\varepsilon = 0.5$) - BIM ($\varepsilon = 0.5$) - PGD ($\varepsilon = 0.5$)

[V.W. Anelli, A. Bellogín, Y. Deldjoo, T. Di Noia, F. A. Merra, MSAP: Multi-Step Adversarial Perturbations on Recommender Systems Embeddings. FLAIRS Conference 2021]

MULTIMEDIA RS: ATTACK TIMIMIG

TRAINING TIME (Poisoning)

• Image samples are perturbed and injected in the VRSs before the training.

TESTING TIME (Evasion)

 Images are perturbed at inference time

• WORKS

- TAaMR [Di Noia et al, 2020]
- VAR [Anelli et al, 2021]

• WORKS

- BlackBox-Model [Cohen et al, 2021]
- Adv. Item Promotion [Zhouran et al, 2021]

ADVERSARIAL ATTACKS AGAINST VISUAL-AWARE RS

THE ADVERSARY CAN PERTURB THE PRODUCT IMAGES

[Tommaso Di Noia, Daniele Malitesta, Felice Antonio Merra: TAaMR: Targeted Adversarial Attack against Multimedia Recommender Systems. DSN Workshops 2020]

ADVERSARIAL ATTACKS AGAINST VISUAL-AWARE RS

(a) original (sock)probability: 60%rec. position: 180th

(b) attacked (running shoe)probability: 100%rec. position: 14th

Dataset	Origin → Target	Attack	$\epsilon = 2$	$\epsilon = 4$	$\epsilon = 8$	$\epsilon = 16$
	Sock Dunning Shoos	FSGM	9.32%	17.02%	22.14%	21.68%
	Sock→Ruilling Shoes	PGD	68.69%	98.37%	99.92%	99.84%
Amazon	Sock Analog Clock	FSGM	0.16%	0.31%	0.39%	0.23%
Men	Sock-Allalog Clock	PGD	30.77%	87.10%	99.46%	100.00%
	Sock Jarsey T shirt	FGSM	8.24%	17.17%	26.50%	15.54%
	Sock—Jersey, 1-shirt	PGD	67.29%	98.83%	100.00%	100.00%
	Maillat Pragaioro	FGSM	45.51%	51.48%	52.30%	56.46%
Amazon Women	Mainot→Diassiere	PGD	85.32%	99.40%	99.95%	100.00%
	Maillot Chain	FGSM	0.38%	1.31%	1.92%	2.68%
		PGD	17.20%	90.53%	99.95%	99.95%

Attacks success probability.

[Tommaso Di Noia, Daniele Malitesta, Felice Antonio Merra: TAaMR: Targeted Adversarial Attack against Multimedia Recommender Systems. DSN Workshops 2020]

TRAINING TIME ATTACK VISUAL ADVERSARIAL RECOMMENDATION FRAMEWORK

SINF

Politecnico di Bari

[Anelli, Deldjoo, Di Noia, Malitesta and Merra, A Study of Defensive Methods to Protect Visual Recommendation Against Adversarial Manipulation of Images, SIGIR'21]

TRAINING TIME ATTACK VISUAL ADVERSARIAL RECOMMENDATION FRAMEWORK

BLACK BOX wrt the Recommender

Adversarial Attacks

- FGSM
- PGD
- Carlini&Wagner

Adversarial Defense

- Adversarial Training of the IFE
- Free Adversarial Training of the IFE

[Anelli, Deldjoo, Di Noia, Malitesta, and Merra, A Study of Defensive Methods to Protect Visual Recommendation Against Adversarial Manipulation of Images, SIGIR'21]

WHITE BOX wrt the IFE

TRAINING TIME ATTACK VISUAL ADVERSARIAL RECOMMENDATION FRAMEWORK

				Image Feature Extractor							
Data	VRS	Att.	Traditional		Adv	. Train.	Free A	dv. Train.			
			SR	FL	SR	FL	SR	FL			
		FGSM	65%	14.0948	18%	0.0330	15%	0.0278			
	FM, VBPR, AMR	PGD	97%	36.8843	18%	0.0334	15%	0.0283			
		C&W	89%	20.5172	48%	2.8022	42%	1.9080			
Amazon		FGSM	65%	9.0480	18%	0.0944	15%	0.0951			
Men	ACF	PGD	97%	9.2606	18%	0.0944	15%	0.0954			
		C&W	89%	10.4917	48%	0.7582	42%	0.4955			
		FGSM	65%	16.4055	_	_	-	_			
	DVBPR	PGD	97%	16.1151	_		_	—			
		C&W	89%	16.3442	_	—	—	—			

[Anelli, Deldjoo, Di Noia, Malitesta and Merra, A Study of Defensive Methods to Protect Visual Recommendation Against Adversarial Manipulation of Images, SIGIR'21]

TRAINING TIME ATTACK HUMAN IMPERCEPTIBILITY

a. Clean Rec. Position: 68th

b. Attack + T Rec. Position: 10th LPIPS: 0.5484

c. Attack + AT Rec. Position: 27th LPIPS: 0.5347

d. Attack + **FAT** Rec. Position: 40th LPIPS: 0.3447

[V.W. Anelli, T. Di Noia, D. Malitesta, F.A. Merra, Assessing Perceptual and Recommendation Mutation of Adversarially-Poisoned Visual Recommenders. WDCS@NeurIPS2020: 49-56]

Privacy in RS

THE PRIVACY-PERSONALIZATION TRADE-OFF IN RS

- The quality of the recommendations is correlated with the amount, richness, and freshness of the underlying user modeling data
- The same factors drive the severity of the privacy risk

[Friedman A., Knijnenburg B.P., Vanhecke K., Martens L., Berkovsky S. (2015) Privacy Aspects of Recommender Systems. In: Ricci F., Rokach L., Shapira B. (eds) Recommender Systems Handbook (2nd edition). Springer, Boston, MA.]

PRIVACY RISKS IN RS

• Direct access to data

- Unsolicited data collection
- Sharing data with third parties
- Unsolicited access by employees

Inference from User Preference Data

- Exposure of sensitive information
- Targeted Advertising
- Discrimination
- Risks Imposed by other System Users
 - In collaborative approaches, users are compared with each other
 - Create fake profiles to identify other users' preferences
 - By observing changes in item-to-item collaborative systems an attacker may infer the preferences of a target user

[Friedman A., Knijnenburg B.P., Vanhecke K., Martens L., Berkovsky S. (2015) Privacy Aspects of Recommender Systems. In: Ricci F., Rokach L., Shapira B. (eds) Recommender Systems Handbook (2nd edition). Springer, Boston, MA.]

Privacy-preserving Machine Learning for RS

WHAT PRIVACY-PRESERVING MACHINE LEARNING TRIES TO PROTECT

- Input training data;
- Output predicted labels;
- Model information, including parameters, architecture, and loss function;
- Identifiable information, such as which site a record comes from.

ATTACK AND THREAT MODELS

Knowledge

White-box vs. Black-box

Methods

Model extraction vs. Encoding Information

THE POINT WITH PRIVACY

We want to learn nothing about individuals but still learn useful information about a population.

De-identified data are not so secure Releasing just statistics is still non-private

LEARNING PARADIGMS

- Learning paradigms
 - Cetralized
 - Decentralized
 - Distributed
 - Federated

[Tommaso Di Noia, Nava Tintarev, Panagiota Fatourou, Markus Schedl. Recommender systems under European Al regulations. Commun. ACM 65(4): 69-73 (2022)]

FEDERATED LEARNING: ADVANTAGES

01	Data privacy/security	Data pool not required for the model. Data don't leave user's devices
$\stackrel{\longleftarrow}{\leftarrow}$	Data diversity and Model Liability	FL facilitates access to heterogeneous data. Reduces legal liability of the model
	Real time continuous learning	Model are constantly improved using client data with no need to aggregate data for continuous learning
	Hardware / Bandwidth efficiency	FL models do not need complex central server to analyze data/Do not require uploading large amount of data

DIFFERENTIAL PRIVACY

 \mathcal{X} and \mathcal{Y} are adjacent datasets (\mathcal{Y} is equal to \mathcal{X} but for one more example)

 ${\mathcal M}$ is a randomized mechanism over a dataset

 $\mathcal M$ gives ε -differential privacy if for all pairs of datasets $\mathcal X$ and $\mathcal Y$ and all events S we have:

 $Pr[\mathcal{M}(\mathcal{X}) \in S] \le e^{\varepsilon} Pr[\mathcal{M}(\mathcal{Y}) \in S]$

If $\varepsilon = 0$, we have no probability loss, and an attacker cannot distinguish the two datasets

With current and future side information and with postprocessing, the probability ratio should still hold

[Dwork, McSherry, Nissim and Smith, 2006]

(ALMOST) DIFFERENTIAL PRIVACY

$P(\mathcal{M}(\mathcal{X}) \in S) \le e^{\varepsilon} P(\mathcal{M}(\mathcal{Y}) \in S) + \delta$

DIFFERENTIAL PRIVACY IN SHORT

- Strong privacy guarantees
- No longer needed attack modeling
- Quantifiable privacy loss
- Composable mechanisms
- Useful for analyzing any algorithm

SECURE MULTI-PARTY COMPUTATION

Additive Secret Sharing

We can split a secret into N shares and keep it hidden as long as at most N-1 shareholders collaborate.

We can sum shares of different secrets between themor sum and multiply any non-encrypted number (homomorphic addition)

HOMOMORPHIC ENCRYPTION

- It is a cryptographical scheme allowing certain mathematical operations to be performed directly in ciphertexts without prior decription.
 - <u>Partially homomorphic encryption</u>: can reach additive homomorphism or multiplicative homomorphism;
 - <u>Somewhat homomorphic encryption</u>: operations can be applied for a limited number of times, since noise is used;
 - <u>Fully homomorphic encryption</u>: allows unlimited number of additions and multiplications over cyphertexts

WHICH TECHNIQUE?

- HE and SMPC are often replaceable
 - HE: little interaction and expensive computation
 - SMPC: Cheap computation and significant amount of interaction
- SMPC replaces computation with interaction, offering better practical performance
- DP replaces accuracy with efficiency. If the coordinator is trusted, send plain data to preserve more accuracy

Closing Remarks

SECURITY: OPEN DIRECTIONS IN RS

- New attacks strategies
 - Use state-of-the-art adv. Attack strategies
 - Implement perturbation direct on the input:
 - user-rating profile
 - Imitation of implicit feedback
 - images, audio, videos
- New defence approaches
- Verify and Extend the AVD-RF on other recommenders
- New domains

SECURITY AND PRIVACY: OPEN DIRECTIONS IN RS

- Both related to attacking and defending the user
- What's the effect of combining privacy-preserving ML with adversarial ML for recommender systems?
 - Accuracy
 - Diversity
 - Novelty
 - Fairness

MANY THANKS TO THE RECSYS CREW (AND ALUMNI) @ POLITECNICO DI BARI

Vito Walter Anelli Assistant Professor @ Politenico di Bari

Vito Bellini Applied Scientist II @ Amazon

Giandomenico Cornacchia Ph.D. student @ Politecnico di Bari

Yashar Deldjoo Assistant Professor @ Politecnico di Bari

Antonio Ferrara Assistant Professor @ Politecnico di Bari

Daniele Malitesta Ph.D. student @ Politecnico di Bari

Alberto Mancino Ph.D. student @ Politecnico di Bari

Roberto Mirizzi Vice President of ML, RecSys, Search @ Discovery Inc

Felice Merra Applied Scientist II @ Amazon

Fedelucio Narducci Associate Professor @ Politecnico di Bari

Vito Claudio Ostuni Senior Research Scientist @ Netflix

Vincenzo Paparella Ph.D. student @ Politecnico di Bari

Claudio Pomo Ph.D. student @ Politecnico di Bari

Azzurra Ragone Assistant Professor @ University of Bari Aldo Moro

THANK YOU + Q&A

Tommaso Di Noia. SECURE AND PRIVATE RECOMMENDATION. OARS Workshop @ KDD 2022

miniani

11141111