# A Unified Game-Theoretic Framework for **Recommender Systems and Search Engines**

#### ChengXiang ("Cheng") Zhai **Department of Computer Science**

(Carl R. Woese Institute for Genomic Biology School of Information Sciences Department of Statistics) **University of Illinois at Urbana-Champaign** 

czhai@illinois.edu

http://czhai.cs.illinois.edu/

1

The Data and Information Systems Laboratories at the towards of times at Datase Chargage

KDD 2021 OARS Workshop, Aug. 15, 2021

## Recommender Systems vs. Search Engines

- Commonality
  - Both involve users, a collection of items that are potentially interesting to the users
  - Same general goal: Connect users with the right items at the right time
  - Both benefit from using machine learning
- Difference
  - User taking initiative ("pull") vs. system taking initiative ("push")
  - Query-driven vs. context-driven
  - To what extent users know what they want
  - Expectation of a user



#### **Research in Recommender Systems and Search Engines**

| Topics of interest for RecSys 2021                                                                         | Topics of interest for SIGIR 2021                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Algorithm scalability, performance, and implementations<br>Bias fairness hubbles and ethics of recommender | <b>Search and ranking.</b> Core IR algorithmic topics, including IR at scale.                                                                                                        |
| systems<br>•Case studies of real-world implementations                                                     | <b>Foundations and theory of IR.</b> Theoretical or empirical contributions on technical or social aspects of IR.                                                                    |
| •Conversational and natural language recommender<br>systems                                                | <b>Domain-specific applications.</b> Research focusing on domain-specific IR challenges.                                                                                             |
| •Cross-domain recommendation<br>•Economic models and consequences of recommender                           | Content recommendation, analysis and classification.<br>Recommender systems, rich content representations and content<br>analysis: Filtering and recommendation (e.g., content-based |
| •Interfaces for recommender systems<br>•Novel approaches to recommendation, including voice,               | filtering, collaborative filtering, recommender systems,<br>recommendation algorithms, zero-query and implicit search,<br>personalized recommendation)                               |
| VR/AR, etc.<br>•Preference elicitation                                                                     | Artificial Intelligence, semantics, and dialog. Research bridging Al and IR, especially toward deep semantics and dialog with                                                        |
| <ul> <li>Privacy and security</li> <li>Socially- and context-aware recommender systems</li> </ul>          | intelligent agents.<br>Human factors and interfaces. User-centric aspects of IR including                                                                                            |
| •Systems challenges such as scalability, data quality, and performance                                     | user interfaces, behavior modeling, privacy, interactive systems.<br><b>Evaluation.</b> Research that focuses on the measurement and                                                 |
| •User studies                                                                                              | evaluation of IR systems.                                                                                                                                                            |





3

# Can we study recommender systems and search engines in a unified framework?



#### A Cooperative Game-Playing Framework (CGF) for Search and Recommendation

- {Search, Recommendation} = cooperative game-playing
- **Players**: Player 1= system; Player 2= user •
- **Rules** of game:
  - Players take turns to make "moves"
  - First move = "user entering the query" (in search) or "system recommending information" (in recommendation)
  - User makes the last move (usually)
  - For each move of the user, the system makes a response move (shows an interaction interface), and vice versa
- **Objective**: deliver relevant/useful information to the user with minimum user effort & minimum operating cost for system

**Unification of search and recommendation** 

The Dark and Information Systems Laboratories of The University of Hirasa 20 Data Changenger Inter State Data Changenger Inter State Data Changenger

#### Search as cooperative game-playing



#### **Recommendation** as cooperative game-playing



#### Major benefits of Cooperative Game-playing Framework (CGF)

#### General

- A formal framework to integrate search and recommendation, enabling study of user studies, evaluation, ranking models, and scalability in a unified framework
- A general roadmap for identifying unexplored important research topics in Interactive search & recommendation
- Specific
  - Naturally optimize performance on an entire session instead of that on a single query or recommendation cycle (optimizing the chance of winning the <u>entire game</u>)
  - Optimize the collaboration of machines and users (maximizing <u>collective intelligence</u>) [Belkin 96]
  - Emphasize the two-way communications between a user and a system

— ...



# 4 Key Elements of the Game Framework (4 C's)

- **Collaboration**: Optimization of the collaboration (or **combined intelligence**, combined performance) of a user and a system
  - User knows well about what's useful, but doesn't know the whole information space
  - System "sees" the whole information space, but doesn't know which is most useful
- **Communication**: Optimization of the **two-way communications** between a user and a system
  - Communication of the shared goal and plan
  - Explanation of both user actions and system responses
- Cognition: Optimization of cognition for user (bridge the cognition gap) and system (machine learning)
  - Modeling of knowledge state and helping users learn during the interaction [Collins-Thompson et al. 17]
  - Helping system learn knowledge about a user's preferences and needs
- **Cost:** Optimization of system operation cost
  - Modeling operation cost and providing cost-effective responses



#### Formalization of the Cooperative Game



#### Bayesian Decision Theory for Interactive Recommendation & Search (IRS)



# Simplification of Computation

Approximate the Bayes risk (posterior mode)

 $R_{t} = \arg \min_{r \in r(A_{t})} \iint_{M} L(r, M, S) p(M | U, H, A_{t}, C, S) dM$   $\approx \arg \min_{r \in r(A_{t})} L(r, M^{*}, S) p(M^{*} | U, H, A_{t}, C, S)$   $= \arg \min_{r \in r(A_{t})} L(r, M^{*}, S)$ where  $M^{*} = \arg \max_{M} p(M | U, H, A_{t}, C, S)$ 

- Two-step procedure
  - Step 1: Compute an updated user model M\* based on the currently available information
  - Step 2: Given M\*, choose an optimal response to minimize the loss function



#### **Optimal Interactive Recommendation & Search (IRS)**



System's decision process can be modeled by a Partially Observable Markov Decision Process (POMDP) with (M, S) as State

The Daran Information Systems Laboratories. TIMAN

#### **Duality of User & System Decision Making**



User's decision process (behavior) can be modeled by a POMDP as well with (E,S) as State Simulation of user agent for evaluating IRS [Zhang et al. 17]

The Darkand Hormston Systems Laboratories 11N

TIMAN

#### Instantiation of the Cooperative Game Framework(CGF)

- **Situation S**: can include time, location, and other environmental factors that are relevant to a task
- Information/Item Collection C: naturally available in any application
- **User U**: can include any information we know about a user (or group)
- User interaction history H: naturally accumulated over time
- User Actions and System Responses R(A): all interfaces (moves of the game)
- Loss Function L(R,M,S): captures the objective of the game
- User Model M: can include everything that we can infer about a user relevant to deciding how to respond to a user's action
- Inference of User Model P(M|U, H, At, C,S): capture system's belief about user model M

#### The Darked Information Systems Laboratorias The Darked Information Systems Laboratorias The Darked Information Systems Laboratorias

### Instantiation of IR Game: Moves (Interface Design)

- User moves: Interactions can be modeled at different levels
  - Low level: keyboard input, mouse clicking & movement, eye-tracking
  - Medium level: query input, result examination, next page button
  - High level: each query session as one "move" of a user
- System moves: can be enriched via sophisticated interfaces, e.g.,
  - User action = "input one character" in the query: System response = query completion
  - User action = "scrolling down": System response = adaptive summary
  - User action = "entering a query": System response = recommending related queries
  - User action = "entering a query": System response = ask a clarification question

#### The part of Information Systems Laboratories In The Interventy of Eleven at Values Changes

# Example of new moves (new interface): Explanatory Feedback

- Optimize combined intelligence ightarrow
  - Leverage human intelligence to help search engines
- Add new "moves" to allow a user to help a search engine with minimum effort
- Explanatory feedback
  - I want documents similar to this one except for not matching "X" (user typing in "X")
  - I want documents similar to this one, but also further matching "Y" (user typing in "Y")

— ...



#### Instantiation of IR Game: User Model M

- M = formal user model capturing essential knowledge about a user's state for optimizing system moves
  - Essential component:  $\theta_{\text{U}}$  = user's current information need
  - K = knowledge state (seen items)
  - Readability level
  - T= task
  - Patience-level
  - B= User behavior
  - Potentially include all findings from user studies!

#### An attempt to <u>formalize</u> existing models such as

- Anomalous State of Knowledge (ASK) [Belkin 80, Belkin et al. 82]
- Cognitive IR Theory [Ingwersen 96, Ingwersen & Järvelin 06]

# Instantiation of IR Game: Inference of User Model

- P(M|U, H, At, C,S) = system's current belief about user model M
  - Enables inference of the formal user model M based on everything the system has available so far about the user and his/her interactions
- Instantiation can be based on
  - Findings from user studies, and
  - Machine learning using user interaction log data for training
- Much work has been done on estimating/updating the information need  $\theta_{\rm U}$  and clicking behavior (e.g., implicit feedback [Joachims et al. 05, Shen et al. 05], intent understanding [Liu et al. 14], and many click models [Chuklin et al. 15, Liu et al. 17] )
- Some work on inferring/updating other variables about the user, e.g.,
  - reading level [Collins-Thompson et al. 11]
  - modeling decision point [Thomas et al. 14]
- Similar work in the recommender system context



### Instantiation of IR Game: Loss Function

- L(Rt ,M,S): loss function combines measures of
  - Utility of Rt for a user modeled as M to finish the task in situation S
  - Effort of a user modeled as M in situation S
  - Cost of system performing Rt (connected with efficiency of IR systems [Witten et al. 99])
- Tradeoff varies across users and situations
- Utility of Rt is a sum of
  - ImmediateUtility(Rt ) and
  - FutureUtilityFromInteraction(Rt), which depends on user's interaction behavior

# Instantiation of IR Game: Loss Function (cont.)

- Formalization of utility depends on research on evaluation, task modeling, and user behavior modeling
- Traditional evaluation measures tend to use
  - Very simple user behavior model (sequential browsing)
  - Straightforward combination of effort and utility
- They need to be extended to incorporate more sophisticated user behavior models (e.g., [de Vries et al. 04], [Smucker & Clarke 12], [Baskaya et al. 13])
- Much progress has been made recently on **incorporating click models** (simple user interaction models) into a loss function for **learning to rank or recommend** (e.g., online learning to rank [Hofmann et al. 11, Wang et al. 19], dynamic IR [Yang et al. 06], recommendation [Zhao et al. 08], sequential browsing [Wei et al. 17])



#### **Example of Instantiation:**

#### Interface Card Model (ICM) [Zhang & Zhai 15, Zhang & Zhai 16]

How to optimize the interface design?





Santiago Capital of Chile

#### why

why do dogs eat grass why do we yawn why is the sky blue why am i so tired Press Enter to search.

... or a combination of some of these?

#### How to allocate screen space among different blocks?

Yinan Zhang, ChengXiang Zhai, Information Retrieval as Card Playing: A Formal Model for Optimizing Interactive Retrieval Interface, Proceedings of ACM SIGIR 2015.

Yinan Zhang and Chengxiang Zhai. 2016. A Sequential Decision Formulation of the Interface Card Model for Interactive IR. In Proceedings of ACM SIGIR 2016.



# Optimal User Interface = Optimal "Card Playing"

- In each interaction *lap*
- ... facing an (evolving) interaction *context*
- ... the system tries to play a *card*
- ... that optimizes the user's *expected surplus*
- ... based on the user's *action model* and *reward / cost* estimates
- ... given all the *constraints* on card

#### Example of interface optimization



#### Expected surplus of an interface card: E(u<sup>t</sup>|q<sup>t</sup>,c<sup>t</sup>)

$$E(u^{t} | q^{t} = \underbrace{i \in \mathbb{T}}_{t \in \mathbb{T}}, c^{t})$$

$$=p(a^{t} = "view content" | c^{t}, q^{t}) \times u(\underbrace{i \in \mathbb{T}}_{t \in \mathbb{T}}, q^{t})$$

$$u(\underbrace{i \in \mathbb{T}}_{t \in \mathbb{T}}, q^{t}) = Gain(\underbrace{i \in \mathbb{T}}_{t \in \mathbb{T}}, -Cost(Viewing))$$

$$Gain(\underbrace{i \in \mathbb{T}}_{t \in \mathbb{T}}) = Relevance(\underbrace{i \in \mathbb{T}}_{t \in \mathbb{T}})$$

$$+ p(a^{t} = "see more" | c^{t}, q^{t}) \times u(\underbrace{i \in \mathbb{T}}_{t \in \mathbb{T}}, q^{t}) + ...$$

$$Depends on the next interface card q^{t+1}$$

#### Expected surplus of an interface card: E(u<sup>t</sup>|q<sup>t</sup>,c<sup>t</sup>)



### **ICM:** Formal Definition

$$\begin{array}{ll} \underset{q^{t}}{\operatorname{maximize}} & E(u^{t}|c^{t},q^{t}) \\ & = \sum_{a^{t+1} \in \mathcal{A}(q^{t})} p(a^{t+1}|c^{t},q^{t}) \, u(a^{t+1}|c^{t},q^{t}) \\ & \text{subject to} & f_{c}^{t}(q^{t}) \leq 0 \end{array}$$



















$$\begin{array}{ccc} & & & & & & & \\ \hline \text{Reward} & & & & \\ Cost \\ r(a^{t+1}|c^t,q^t) - s(a^{t+1}|c^t,q^t) \\ & & & \\ & & = \sum_{a^{t+1} \in \mathcal{A}(q^t)} p(a^{t+1}|c^t,q^t) \underbrace{u(a^{t+1}|c^t,q^t)}_{\text{u}(a^{t+1}|c^t,q^t)} \\ & & & \\ & & \text{subject to} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$



$$\begin{array}{rl} \underset{q^{t}}{\text{maximize}} & \overbrace{E(u^{t}|c^{t},q^{t})}^{\text{Expected surplus}} \\ & = \sum_{a^{t+1} \in \mathcal{A}(q^{t})} p(a^{t+1}|c^{t},q^{t}) \, u(a^{t+1}|c^{t},q^{t}) \\ & \text{subject to} & f_{c}^{t}(q^{t}) \leq 0 \end{array}$$





![](_page_33_Picture_1.jpeg)

#### **Refinements/Instantiations of ICM**

![](_page_34_Figure_1.jpeg)

## User study experiments

- Setting
  - Prototype interfaces for New York Times
  - Articles as items and keywords as tags
  - Two sizes: a medium sized one and a small one
- Comparison
  - # Interaction rounds to reach item of interest
  - We *automatically* optimize the interface layout
  - Compare with pre-designed static interfaces
### Medium sized screen





## **Smaller screen**





## # Interaction round comparison

#### More beneficial when screen is small and number of items large

| Table 1 | : Sign | ificance | levels | of | comparison | results. |
|---------|--------|----------|--------|----|------------|----------|
|---------|--------|----------|--------|----|------------|----------|

| Card size | Item set size | Valid sample size | P-value   |
|-----------|---------------|-------------------|-----------|
| Small     | 20            | 19                | 0.004753  |
| Small     | 50            | 23                | 0.0003546 |
| Medium    | 20            | 18                | 0.09183   |
| Medium    | 50            | 20                | 0.01097   |



## CGF & Diversification: 3 Different Reasons for Diversification

- 1. Redundancy reduction → reduce user effort
- 2. Diverse information needs (e.g., overview, subtopic retrieval) → increase the immediate utility
- 3. Active relevance feedback  $\rightarrow$  increase future utility



# Capturing diversification with different loss functions

## 1. **Redundancy reduction**: Loss function includes a redundancy measure

- Special case: list presentation + MMR [Zhai et al. 03]

#### 2. Diverse information needs: loss function defined on latent topics

- Special case: PLSA/LDA + topic retrieval [Zhai 02]

3. Active relevance feedback: loss function considers both relevance and benefit for feedback (online learning to rank, dynamic IR)

- Special case: hard queries + feedback only [Shen & Zhai 05]

## Whole Session/Page Optimization

- Special case of the Cooperative Game framework: Objective function includes expectation over future interactions
  - Whole session optimization: consider all future interactions with the user
  - Whole page optimization: consider all possible actions a user can take on the page
  - Both directly captured by the Interface Card Model
- Algorithms are generally based on multi-armed bandits and reinforcement learning and aim to optimize the tradeoff between exploitation (optimizing current benefit) and exploration (optimizing future benefit), leading to diversification of results
- The empirical benefit so far has been mostly optimizing the ranking of results, thus no "visible" impact on the interface design
- Exception: Whole page optimization using ML [Wang et al. 16]

Yue Wang, Dawei Yin, Luo Jie, Pengyuan Wang, Makoto Yamada, Yi Chang, and Qiaozhu Mei. 2016. Beyond Ranking: Optimizing Whole-Page Presentation. In *Proceedings of WSDM 2016.* 



#### How to evaluate an Interactive Recommender & Search (IRS) system?

- Problem with using A/B test: Not reusable, not reproducible
- Cranfield evaluation methodology has the following benefit, but it cannot be used to evaluate IRS
  - − Reusable test collection → Can be reused and ensure fairness in comparison
  - Facilitate component testing
- How can we make a fair comparison of multiple IRS systems using reproducible experiments?
- Must control the users → Using user simulators!
- SIGIR'21 has a workshop on user simulation for IR evaluation (<u>https://sim4ir.org/</u>)

#### TIMAN

## IR evaluation as simulation [Zhang et al. 17, Pääkkönen et al. 17]

- Simulation provides a general way to evaluate IR systems
  - General formal framework [Zhang et al. 17]: Cranfield evaluation as a special instantiation case (simulating "naïve" users)
- Benefit
  - "Controlled" user study for reproducibility
  - "Generalized" Cranfield test for sophisticated IR interface
- Feasibility shown in some existing work (e.g., [Liu et al. 07], [Carterette et al. 15], [Zhang et al. 17], [Pääkkönen et al. 17])

## Search simulation framework [Zhang et al. 17]

- Top level components
  - System: S
  - User / simulator: U
  - Task: T
  - Interaction sequence: I
- Metrics
  - Interaction reward and cost: R(I,T,U,S) and C(I,T,U,S)
  - Simulator reward and cost: R(T,U,S) and C(T,U,S)
    - Expectation w.r.t. p(I|T,U,S)



## **Classical IR simulator**

- Task: find (all) relevant documents
- Interface card: document (snippet)
- User action: click / skip (and read next) / stop
  - User always clicks a relevant document
  - User may skip or stop at a non-relevant document
- Lap reward: 1 / 0 for relevant / non-relevant doc
  - Cumulative reward: # relevant docs
- Lap cost: 1 for each doc
  - Cumulative cost: # docs (the simulator scanned through)
- User state: cumulative reward and cost

#### TIMAN



















## Mean Average Precision (MAP)

- Variable-recall simulator
  - Classical IR simulator with task of finding N' relevant documents (N' between 1 and N)
  - Stops and only stops when the task is finished
- Average Precision (AP)
  - Average R(I,T,U,S) / C(I,T,U,S) across N variable-recall simulators with N' ranging from 1 to N respectively
  - AP@K: K = cost budget











## Future Work ...



### Major Challenges for Future Research in Interactive Recommendation and Search (IRS)

#### 1. How to evaluate an IRS system (with controlled experiments)?

- How to build realistic user simulators? User search logs? User study designed specifically for eliciting user behavior? How to evaluate simulators [Labhishetty & Zhai 21]?
- How to measure task performance and measure user effort?
- How to incorporate situation/context into an evaluation framework?

#### 2. How to formally (mathematically) represent and model a user?

- How to leverage theory from Psychology to design a formal user model?
- How to represent a user's state of knowledge?
- How to model many other aspects of a user (e.g., potential needs, browsing behavior, situational constraints, cognitive state, ...)
- How to model shared characteristics of users? Structure on users?



#### 3. How to infer and update a user model over time?

- Given all the observed data about a user, how can we infer knowledge about the user and update the user model over time?
- How can we recognize and correct errors in a user model (misunderstanding of users)?

#### 4. How to model and infer a user's task?

- What is exactly a user task?
- How do we assess whether a user task has been completed? Assess progress toward task completion?
- How do we go beyond supporting query formulation to task specification?

- 5. How do we design an "IRS game" with richer user actions and system responses?
  - How can we systematically enumerate the possibilities of "interface cards"? Are there a finite number of basic interface elements that would be sufficient when combined in a flexible way?
  - How can we design interfaces to encourage/optimize user-system collaboration?
    (Interface = Language for communication between users and system)
  - How do we design interfaces to enable multi-mode interactions (e.g., speech + touch screen)?
  - How can we design interfaces to enable a system to explain its responses to users?
  - How can we parameterize an interface to enable automated optimization of interface using an algorithm?
- 6. How should we formalize the optimization problem of an "IRS game"?
  - How do we formally define the multiple objectives (task performance, user effort, system cost, ...)?
  - How do we set up the optimization problem so as to make it feasible to solve it?



#### 7. How can we efficiently solve the optimization problem of IRS?

- POMDP and reinforcement learning are generally complex to compute. How can we simplify the objective function and make approximations?
- How can we leverage advances in machine learning to improve modeling and algorithms for IRS?
- How can we engage users to help simplify the optimization problem (resolve uncertainties)? How to simplify the exploration-exploitation tradeoff?
- 8. How can the system dynamically adapt the interface to each individual user in a context-sensitive and task-sensitive way?
  - Novice vs. expert users?
  - User sitting in a train vs. being at home?
  - Medical diagnosis task vs. solve a homework problem?
  - How can the system adapt the interface while minimizing the cognitive load on users? How can the system "train" a user to recognize changes in the interface?



#### 9. How can the system provide help for users all the time?

- Many "help me to do X" buttons and many explanations
- "Reporting problem" button on every interface page?
- How to maximize the flexibility for a user to dynamically reconfigure an interaction interface (let the user "program" the interface)?
- How to sense a user's emotion during IRS?

## 10. How to support multi-mode interactions and engage a user to go beyond search or recommendation to support user tasks?

- An IRS system can evolve into a personalized intelligent task support agent

## Summary

- Recommendation and search are complementary ways to serve users with useful information and can be studied in the same unified cooperative game framework (CGF)
- The unified problem can be called
  - Interactive/Intelligent Recommendation & Search (IRS), or
  - Interactive/Intelligent Search & Recommendation (ISR)
- Key challenges for future research:
  - Mathematical modeling of users (build user simulators)
  - Continuous updating of user model & adaptive context-sensitive service to each individual user
  - Collaboration with users (learning to collaborate)
  - Optimization of multiple objectives (learning to make adaptive tradeoff)
  - Evaluation of IRS/ISR (particularly using user simulators)
  - Optimization of system operation (minimization of **operation cost** and **energy consumption**)



## **Thank You!**

## Questions/Comments?

czhai@illinois.edu

http://czhai.cs.illinois.edu/

Looking forward to opportunities for collaboration!



## References

- [Baskaya et al. 13] Feza Baskaya, Heikki Keskustalo, and Kalervo Järvelin. 2013. Modeling behavioral factors ininteractive information retrieval. In *Proceedings of ACM CIKM 2013*, 2297-2302.
- [Belkin 80] Belkin, N.J. "Anomalous states of knowledge as a basis for information retrieval". The Canadian Journal of Information Science, 5, 1980, pages 133-143.
- [Belkin et al. 82] Belkin, N.J., Oddy, R.N., Brooks, H.M. "ASK for information retrieval: Part I. Background and theory". The Journal of Documentation, 38(2), 1982, pages 61-71.
- [Belkin 96] Belkin, N. J. (1996). Intelligent information retrieval: Whose intelligence? *Proceedings of the Fifth International Symposium for Information Science*, Konstanz: Universitätsverlag Konstanz, 25-31.
- [Carterette et al. 15] Carterette, Ben, Ashraf Bah, and Mustafa Zengin. "Dynamic test collections for retrieval evaluation." *Proceedings of the 2015 international conference on the theory of information retrieval*. ACM, 2015.
- [Chuklin et al. 15] Chuklin, Aleksandr, Ilya Markov, and Maarten de Rijke. "Click models for web search." *Synthesis Lectures on Information Concepts, Retrieval, and Services* 7.3 (2015): 1-115.
- [Collins-Thompson et al. 11] Kevyn Collins-Thompson, Paul N. Bennett, Ryen W. White, Sebastian de la Chica, and David Sontag. 2011. Personalizing web search results by reading level. In *Proceedings of ACM CIKM 2011*, 403-412.
- [Collins-Thompson et al. 17] Collins-Thompson, Kevyn, Preben Hansen, and Claudia Hauff. "Search as learning (dagstuhl seminar 17092)." In *Dagstuhl reports*, vol. 7, no. 2. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.



## References (cont.)

- [de Vries et al. 04] A. P. de Vries, G. Kazai, and M. Lalmas. Tolerance to irrelevance: A user-effort oriented evaluation of retrieval systems without predefined retrieval unit. In Proc. RIAO, pages 463–473, 2004.
- [Hofmann et al. 11] Katja Hofmann, Shimon Whiteson, Maarten de Rijke: Balancing Exploration and Exploitation in Learning to Rank Online. ECIR 2011: 251-263
- [Ingwersen 96] Peter Ingwersen, Cognitive Perspectives of Information Retrieval Interaction: Elements of a Cognitive IR Theory. Journal of Documentation, v52 n1 p3-50 Mar 1996
- [Ingwersen & Järvelin 06] Ingwersen, Peter, and Kalervo Järvelin. *The turn: Integration of information seeking and retrieval in context*. Vol. 18. Springer Science & Business Media, 2006.
- [Joachims et al. 05] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay. 2005. Accurately interpreting clickthrough data as implicit feedback. In Proceedings of ACM SIGIR 2005, pp. 154-161.
  DOI=http://dx.doi.org/10.1145/1076034.1076063
- [Liu et al. 07] Yiqun Liu, Yupeng Fu, Min Zhang, Shaoping Ma, and Liyun Ru. 2007. Automatic search engine performance evaluation with click-through data analysis. In *Proceedings of the 16th international conference on World Wide Web* (WWW '07). ACM, New York, NY, USA, 1133-1134. DOI: https://doi.org/10.1145/1242572.1242731
- [Liu et al. 14] Liu, Yiqun, et al. "Overview of the NTCIR-11 IMine Task." *NTCIR*. 2014.
- [Liu et al. 17] Y. Liu, X Xie, C Wang, JY Nie, M Zhang, S Ma, Time-aware click model, ACM Transactions on Information Systems (TOIS) 35 (3), 2017.
- [Pääkkönen et al. 17] Pääkkönen, Teemu, Jaana Kekäläinen, Heikki Keskustalo, Leif Azzopardi, David Maxwell, and Kalervo Järvelin. "Validating simulated interaction for retrieval evaluation." *Information Retrieval Journal* 20, no. 4 (2017): 338-362.



73

## References (cont.)

- [Shen et al. 05] Xuehua Shen, Bin Tan, and ChengXiang Zhai, Implicit User Modeling for Personalized Search, In Proceedings of the 14th ACM International Conference on Information and Knowledge Management (CIKM'05), pages 824-831.
- [Shen & Zhai 05] Xuehua Shen, ChengXiang Zhai, Active Feedback in Ad Hoc Information Retrieval, Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'05), 59-66, 2005.
- [Smucker & Clarke 12] Mark D. Smucker and Charles L.A. Clarke. 2012. Time-based calibration of effectiveness measures. In *Proceedings of ACM SIGIR 2012;* 95-104.
- [Thomas et al. 14] Paul Thomas, Alistair Moffat, Peter Bailey, and Falk Scholer. 2014. Modeling decision points in user search behavior. In *Proceedings of the 5th Information Interaction in Context Symposium* (IIiX '14). 239-242.
- [Wang et al. 16] Yue Wang, Dawei Yin, Luo Jie, Pengyuan Wang, Makoto Yamada, Yi Chang, and Qiaozhu Mei. 2016. Beyond Ranking: Optimizing Whole-Page Presentation. In Proceedings of WSDM 2016.
- [Wang et al. 19] Huazheng Wang, Sonwoo Kim, Eric McCord-Snook, Qingyun Wu, and Hongning Wang. 2019. Variance Reduction in Gradient Exploration for Online Learning to Rank. In Proceedings of ACM SIGIR 2019.
- [Wei et al. 17] Wei, Zeng, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. "Reinforcement learning to rank with Markov decision process." In *Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 945-948. ACM, 2017.
- [Witten et al. 99] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. 1999. *Managing Gigabytes (2nd Ed.): Compressing and Indexing Documents and Images*. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.



## References (cont.)

- [Yang et al. 16] Grace Hui Yang, Marc Sloan, and Jun Wang. 2016. Dynamic Information Retrieval Modeling. Morgan & Claypool Publishers
- [Zhai 02] ChengXiang Zhai, Risk Minimization and Language Modeling in Information Retrieval, Ph.D. thesis, Carnegie Mellon University, 2002.
- [Zhai 16] ChengXiang Zhai. Towards a game-theoretic framework for text data retrieval, IEEE Data Eng. Bull. 39(3): 51-62 (2016).
- [Zhai et al. 03] ChengXiang Zhai, William W. Cohen, and John Lafferty, Beyond Independent Relevance: Methods and Evaluation Metrics for Subtopic Retrieval, *Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval* (SIGIR'03), pages 10-17, 2003.
- [Zhai & Lafferty 06] ChengXiang Zhai, John D. Lafferty: A risk minimization framework for information retrieval. Inf. Process. Manage. 42(1): 31-55 (2006)
- [Zhang et al. 2017] Yinan Zhang, Xueqing Liu, ChengXiang Zhai: Information Retrieval Evaluation as Search Simulation: A General Formal Framework for IR Evaluation. ICTIR 2017: 193-200
- [Zhang & Zhai 15] Yinan Zhang, ChengXiang Zhai, Information Retrieval as Card Playing: A Formal Model for Optimizing Interactive Retrieval Interface. In *Proceedings of ACM SIGIR 2015, pp.* 685-694.
- [Zhao et al. 18] Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang Tang. 2018. Deep reinforcement learning for page-wise recommendations. In *Proceedings of the 12th ACM Conference on Recommender Systems* (RecSys '18). ACM, New York, NY, USA, 95-103. DOI: https://doi.org/10.1145/3240323.3240374

