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AdamDGN: Adaptive Memory using Dynamic Graph Networks for Staleness
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Graph Neural Networks (GNNs) have proved their effectiveness in various recommendation tasks with their ability to incorporate
relational information. However, a staleness problem in a recommendation task has been less explored in the literatures on graph
learning, evaluating their performances on datasets with unrealistic distribution of users. In practical applications, ratio of "cool"
users, who cool down to a service, dominates that of loyal users yielding an extreme sparsity problem for recommender systems. In
this paper, we bring DeepCluster strategy to a memory-based temporal graph model for an online adaptive graph learning method,
AdamDGN, that allows all nodes to be adaptively updated as new events are introduced, irrespective of their involveness. We evaluated
on Amazon product review datasets, and AdamDGN outperforms all other baselines with significant margins on both two datasets.
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1 INTRODUCTION

In recent years, learning from graph structured data emerged as a critical role in machine learning. While traditional
machine learning methods have only considered data points that are spread on an euclidean space, increasing number
of real world problems require an understanding on structured data. For example, in social media, everything is
about interactions between social members. Many hidden attributes of a social member can be revealed by analyzing
interactions that the social member makes with one another. Utilizing such rich information from interactions, we
get to understand each social members in more in-depth manner. Various downstream tasks can be derived using
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in-depth representation of the social member such as political preference classification, friend suggestion or community
detection. On the other hand, e-commerce market is another fine example of commonly used graph structured data,
which in this case has heterogeneous kinds of nodes represented as users and items, connected by purchase histories as
edges. By leveraging purchase histories between users and items, we can further recommend various items to users.

Many works on graph neural networks (GNNs) [10] have been proposed to exploit underlying rich attributes of
graph structured data. GCNs [4] was one of the keystone works that promoted graph neural networks to a practical
level. GCNs use an efficient layer-wise propagation rule by approximating the first-order of spectral graph convolution.
By limiting the spectral convolution to the first-order, GCNs not only lightened computation cost of the operation but
also alleviated the over-smoothing problem that previous spectral methods had. Message Passing Neural Networks
(MPNN) [3] was presented as a general form of spatial convolution operation and treated GCNs as specific kind of a
message passing process. In MPNNs, information between nodes is delivered directly by edges without visiting any
spectral domains.

Recommender system is one of the popular downstream task of GNNs that is widely used in the real applications
such as friend recommendation, movie recommendation and purchase recommendation [2]. Recommendation task
aims to predict possible links from a heterogeneous graph containing two types of nodes; users and items. Taking
advantage of GNNs’ ability to exploit rich structural attribute of data, GNN based methods achieved remarkable success
in recommender system [6, 11, 13, 14]. However, unlike recommendation on static graphs, there has been limited
studies done for recommender systems on dynamically evolving graphs, also called as temporal graphs. To solve
recommendation problem in dynamic graphs, it is important to learn temporal representation out of a sequence of
events and learn how user’s preference evolves. Recurrent Neural Networks (RNNs) and Transformers are popular
building block used to understand temporal interaction data [5, 9, 12] on top of traditional GNNs. Traditional GNNs
can be applied to snapshots of dynamic graph (discrete-time dynamic graph) where temporal networks such as RNNs
aggregate all embeddings from snapshots to solve temporal recommeder system. However dicrete-time dynamic graph
may overlook some critical information as edge addition or deletion, ending up in incomplete representation learning.
In contrast to discrete-time dynamic model, recent literature tackled temporal recommender system by utilizing
continuous-time graph [5, 9, 12], outperforming discrete-time models. TGN [9] is one of the successful models that
uses GRU embedded node memory as state vector to aggregate history interactions followed by GNNs to build node
representation. JODIE [5], on the other hand, had similar memory structure but used time-based prediction MLP module
instead of GNNs. They both tested on preprocessed datasets that were built from selected users who have at least 5
interaction histories. However these preprocessed datasets are not practical in real world application, where majority
of users easily cool down to a service, leaving only a few interaction histories left to refer on.

In this paper we propose AdamDGN that performs well in the real world setting, taking advantage of cluster
adaptation stage of our own. Our model uses clustering and adaptation stage to update out-dated memories along with
other frequently updated memories which are in the same cluster, in order to provide up-to-date representation for cool
users. In the next section, we illustrates some preliminaries for our model. In Sections 3 and 4, we propose our novel
model, AdamDGN, with experimental results.
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2 PRELIMINARIES

2.1 DeepCluster

DeepCluster [7] is a clustering method that jointly learns parameters of Convolutional Neural Networks (CNNs) and
cluster assignments of resulting features. It iteratively clusters on features, using the k-means algorithm with cluster
assignments as supervision signals to train parameters of CNNs. More precisely, DeepCluster first determines cluster
assignments 𝑦𝑛 of input 𝑛 and the centroid matrix C with the following equation:

min
𝐶∈R𝑑x𝑘

1
𝑁

𝑁∑
𝑛=1

min
𝑦𝑛 ∈{0,1}𝑘

𝑓\ (𝑥𝑛) −𝐶𝑦𝑛
2
2 such that 𝑦⊤𝑛 1𝑘 = 1. (1)

where 𝑓\ corresponds to CNNs. Then these assignments act as pseudo-labels when training the weights of CNN. To
prevent trivial solutions such as assigning all inputs to a single cluster, a small random perturbation of centroid for
non-empty cluster or sampling of inputs with a uniform distribution over the classes are used.

2.2 Temporal Graph Networks (TGNs)

TGNs [9] operate on a continuous-time dynamic graph built based on a sequence of events rather than a snapshot of
the graph. A typical example of an event can be an interaction with another node or node-wise change. A memory
module in TGNs keeps the contexts of nodes acquired from historical events, and embedding networks exploit the
memory to learn the temporal properties of the nodes.

Formally, the embeddings of the graph nodes at time t, Z(𝑡) = (z1 (𝑡), ..., z𝑛 (𝑡 ) (𝑡)) can be formulated as follows:

Message Function : m𝑖 (𝑡) = msgs (s𝑖 (𝑡−), s𝑗 (𝑡−),Δ𝑡, e𝑖 𝑗 (𝑡)), m𝑗 (𝑡) = msgd (s𝑗 (𝑡−), s𝑖 (𝑡−),Δ𝑡, e𝑖 𝑗 (𝑡)) (2)

Message Aggregator : m̂𝑖 (𝑡) = agg(m𝑖 (𝑡1), ...,m𝑖 (𝑡𝑏 )) (3)

Memory Updater : s𝑖 (𝑡) = mem(m̂𝑖 (𝑡), s𝑖 (𝑡−)) (4)

Node Embedding : z𝑖 (𝑡) = emb(𝑖, 𝑡) =
∑

𝑗 ∈𝑁𝑘
𝑖
( [0,𝑡 ])

ℎ(s𝑖 (𝑡), s𝑗 (𝑡), e𝑖 𝑗 , v𝑖 (𝑡), v𝑗 (𝑡)) (5)

where the equation 2 computes a message involving source and target nodes i, and j, respectively. 𝑠𝑖 (𝑡−) corresponds to
the node 𝑖’s memory block just before time t, and 𝑒𝑖 𝑗 denotes event embedding. If there are multiple events involving
the same node i in the same batch, they are aggregated with the equation 3. �̂�𝑖 (𝑡), which summarizes the incoming
events for node i within a batch, yields the update of node i’s memory block 𝑠𝑖 (𝑡) (equation 4). For interaction events
including node i and j, the memory blocks of both nodes are updated. To compute the temporal embedding 𝑧𝑖 (𝑡) of
node i, the embedding networks use the memory blocks of node i and its neighborhood in the equation 5. 𝑁𝑘

𝑖
( [0, 𝑡])

denotes the k-hop neighborhood of node i until time t. The choices of msg, agg, mem, emb can be optional, ranging
from simple functions like concatenation, mean, or MLP to more complex ones such as GRU or GNNs with attention.

3 ADAMDGN: ADAPTIVE MEMORY USING DYNAMIC GRAPH NEURAL NETWORK

In this paper, we propose AdamDGN, an online adaptive memory model for dynamic graph learning, to solve the
staleness problem in real world data. Key concern is how to correctly recommend items to cool users who have limited
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purchase histories. In order to tackle this concern, we take advantage of DeepCluster [7] method with our novel
adaptation method to update cool users along with loyal users.

AdamDGN has 3 stages for one train cycle: Aggregation stage, Clustering stage and Adaptation stage. As AdamDGN
is an online training method, every learning cycle occurs as new batch of sample sequences are fed.

3.1 Aggregation Stage

In the first stage, the aggregation stage, model computes aggregated representations for each nodes based on their latest
memory and newly introduced messages from batch of events. Each event has source node and destination node with
it’s edge attribute. Batch of 𝑁 events is defined as B = (s, d, t, e), when s ∈ R𝑁×1, d ∈ R𝑁×1 are tensors of source nodes
and destination nodes with e ∈ R𝑁×𝐸 as matrix of edge attributes. First we need to make a message vector from new
event. The message of the single event is computed as following.

msg𝑡𝑖 = MSG (m𝑡−1
𝑖 ,m𝑡−1

𝑗 ,Δt, e𝑡𝑖 𝑗 ) (6)

, while e𝑖 𝑗 is an edge attribute for the dynamic edge and mem𝑖 is static memory of node 𝑖 . There are several choices for
the MSG function, where we chose simple concatenation for our model. Now memory for node 𝑖 , at time stamp 𝑡 can be
computed as following.

m𝑡
𝑖 = RNN (msg𝑡𝑖 ,m

𝑡−1
𝑖 ) (7)

There are several choices for aggregation method but we used simple RNN cell that takes message msg𝑡
𝑖
as an input

and m𝑡−1
𝑖

as a state for simplicity.

3.2 Clustering Stage

Once memory for all involving nodes are computed, model now moves to the clustering stage. In this stage, a variant
of Online Deep Cluster method is used for online learning. As new batches of events are fed, novel involving nodes
will be added to the existing clusters. We first compute the soft cluster assignments of the memory m𝑡

𝑖
by computing

similarities with centroid matrix, C.

𝑙𝑡𝑖 = softmax (m𝑡
𝑖C

𝑡⊺), when 𝑙𝑡⊺
𝑖

1 = 1 (8)

Then, hard cluster label for node memory 𝑖 can be computed as below.

𝑙𝑡𝑖 = argmax (𝑙𝑡𝑖 ) (9)

Once clustering is over, centroid matrix, C, is updated by averaging updated memories.

𝑐𝑡
𝑙
= E𝑖∈𝑙 m𝑡

𝑖 (10)

As the original paper on DeepCluster [7] points out, there can be a trivial solution to cluster all nodes in a single
cluster. To avoid this trivial solution, we redirect clusters that have less than certain amount of elements to re-cluster
and divide the largest cluster into half to keep balanced number of elements throughout the clusters.

3.3 Adaptation Stage

As dynamic edges are created, memories for few involving nodes get updated. However, memories for nodes that are
excluded from these events, keep holding their out-dated memory resulting in poor recommendation. To tackle this
Manuscript submitted to ACM
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problem, we synchronize the static memories to the movements of centroids, so that local update on involving nodes
globally affects other memories.

For adaptation, we use pseudo label 𝑙𝑡
𝑖
to compute weight sum of centroids. Adapted memories are computed as

follow.

m𝑡+1
𝑖 = (1 − 𝛽)m𝑖 + 𝛽 (𝑙𝑡𝑖 C) (11)

, while 𝛽 is a hyperparameter that determines how much adaptation on memories to apply. If 𝛽 is 1, memory will be
fully adopted to movements of centroids.

3.4 Train

To initialize the model, memories and centroids are set to tensors of zeros. For each batch of events, we randomly select
equal number of negative destination nodes, 𝑑∗, as positive destination nodes, 𝑑 .

For time stamp 𝑡 , resulting vector from Aggregation Stage 7 are now fed to decoder module to compute probability
for link prediction task. There are few options for decoder module and we used a simple MLP.

p𝑝𝑜𝑠 = Dec (ms,md), p𝑛𝑒𝑔 = Dec (ms,md∗ ) (12)

Now from link probability score from positive and negative samples, we now compute binary cross entropy loss for
contrastive learning.

L𝑙𝑖𝑛𝑘 = BCE (p𝑝𝑜𝑠 , p𝑛𝑒𝑔) (13)

On top of the main loss function, L𝑙𝑖𝑛𝑘 , we added self-supervised training goal for clustering. Under the prior that
similar nodes will have similar pseudo label for clusters, we add L𝑝𝑠𝑒𝑢𝑑𝑜 which is computed as following.

p′𝑝𝑜𝑠 = 𝑙
⊺
𝑠 𝑙𝑑 , p

′
𝑛𝑒𝑔 = 𝑙

⊺
𝑠 𝑙𝑑∗ (14)

L𝑝𝑠𝑒𝑢𝑑𝑜 = BCE (𝑝 ′𝑝𝑜𝑠 , 𝑝 ′𝑛𝑒𝑔) (15)

At last, L𝑡𝑜𝑡𝑎𝑙 for training is a weight sum between L𝑙𝑖𝑛𝑘 and L𝑝𝑠𝑒𝑢𝑑𝑜 with hyperparameter 𝛼 that decides how much
pseudo loss we should consider.

L𝑡𝑜𝑡𝑎𝑙 = (1 − 𝛼)L𝑙𝑖𝑛𝑘 + 𝛼L𝑝𝑠𝑒𝑢𝑑𝑜 (16)

Once training is over for each batch, memory now moves to memory update mode where Clustering Stage and
Adaptation Stage take place.

4 EXPERIMENT

4.1 Dataset

Previous works on continuous dynamic graph link prediction task held their experiments on preprocessed data that
contains only the nodes with redundant edges. For instance, Reddit and Wikipedia datasets were filtered out to cool
users who have less than five interaction histories. However, these datasets are far departed from the real world data
in which huge portion of users are cool users, as shown in Table 1. Therefore in our experiment we tested on every
users who have at least two interactions, only filtering out cold start users to focus on our problem. For experiment, we
selected five categories of Amazon’s purchase review dataset [8]: "Appliances", "Books", "Clothing, Shoes and Jewelry",
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Sequence Length Users Items Avg. Degree of User User ≤ 5 User = 2

Appliances 150,299 63,614 12,832 2.36 98.8% 78.9%
Books 901,976 269,959 14,680 3.34 91.5% 61.2%
Clothing, Shoes and Jewelry 871,874 325,356 12,832 2.68 95.3% 66.4%
Electronics 837,365 288,223 22,508 2.91 93.7% 61.8%
Movies and TV 997,559 247,689 83,604 4.03 88.9% 39.4%

Table 1. Analysis on Amazon datasets that were used for the experiment. In order to level how many cool users exist in Amazon data,
we added two columns. Column name "User ≤ 5" indicates percentage of users who have less or equal to 5 purchase histories out of
total unique users and in a similar vein, "User = 2" indicates percentage of users who have only 2 purchase histories.

Baselines Appliances Books Clothing Shoes & Jewelry Electronics Movies & TV

Trend AP 0.615 ± 0.038 0.647 ± 0.057 0.670 ± 0.072 0.665 ± 0.053 0.547 ± 0.014
AUC 0.621 ± 0.037 0.654 ± 0.056 0.676 ± 0.072 0.670 ± 0.052 0.548 ± 0.014

TGAT AP 0.533 ± 0.017 0.643 ± 0.022 0.648 ± 0.054 0.752 ± 0.025 0.618 ± 0.019
AUC 0.560 ± 0.026 0.720 ± 0.026 0.652 ± 0.086 0.829 ± 0.023 0.678 ± 0.022

JODIE AP 0.674 ± 0.026 0.730 ± 0.032 0.808 ± 0.035 0.835 ± 0.040 0.625 ± 0.018
AUC 0.730 ± 0.026 0.800 ± 0.031 0.872 ± 0.028 0.873 ± 0.033 0.665 ± 0.020

TGN AP 0.556 ± 0.016 0.631 ± 0.019 0.750 ± 0.023 0.667 ± 0.024 0.577 ± 0.016
AUC 0.599 ± 0.025 0.706 ± 0.023 0.830 ± 0.021 0.714 ± 0.026 0.626 ± 0.021

AdamDGN AP 0.845 ± 0.025 0.844 ± 0.022 0.894 ± 0.019 0.847 ± 0.021 0.833 ± 0.024
AUC 0.824 ± 0.025 0.896 ± 0.015 0.919 ± 0.013 0.904 ± 0.013 0.812 ± 0.025

Table 2. Experimental results on dynamic graph link prediction task. Our model achieved best results on every datasets in a large gap.
Second best results were highlighted on blue.

"Electronics" and "Movies and TV". For the ones that have too long sequence of events, we used first one million
events for experiment. 70% of events sequence was used for training and 15% each for validation and testing. Batch size
for events were fixed to 300 throughout the experiment. For validation and test, equal number of randomly selected
negative samples were used.

4.2 Results

For experiment, we evaluated our model with four other baselines: Trend, TGAT [1], JODIE [5] and TGN [9]. For
Trend model, we made a model to recommend on any items that were bought in previous batch of events and not to
recommend others.

From Table 2, our model out-performed every other models in both AP and AUC score by a large gap in every
datasets. Other than our model, JODIE performed the second best among other temporal graph models. TGN and TGAT
showed poor performance even though TGN was a state-of-the-art performing model on public datasets: Reddit and
Wikipedia. We assume that due to the sparsity of constructed graph, resulted from dominant number of cool users,
graph attention network could not propagate enough messages from neighboring nodes. On the other hand, JODIE uses
time dependent MLP module to predict how an old memory might change during the time difference, independent of
number of interactions. Results show that in such setting where significant number of cool users exist, predicting future
embedding of out-dated node is better than relying on message passing on sparse graph. AdamDGN uses clustering
Manuscript submitted to ACM
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and adaptation stage to update out-dated memory along with other memories that are in the same cluster. Once loyal
user’s memory get frequently updated, nodes that are clustered in the same cluster will also get updated. As a result,
clustering and adaptation strategy that our model uses, performs better than prediction by MLP or GNNs.

Interesting result is that AUC score from our model and Trend model has positive correlation throughout the datasets.
Since Trend model recommends items that were purchased by other users a lot in a close past, model performs best
when there is an explicit trend on purchase. As a result, Trend performs best in the order of Clothing Shoes & Jewelry,
Electronic, Books, Appliances and Movies & TV, which is the same order from AdamDGN’s result. We can easily infer
from this correlation, that our model can successfully follow the trend of purchase, exploiting the benefit of cluster
wise adaptations.

5 CONCLUSION

In this paper, we propose AdamDGN, an online adaptive memory model for graph learning to tackle staleness problem
that can easily happen on real world recommender system. Our model uses cluster wise adaptation strategy to update
cool users’ outdated memories alongside to loyal users’ up-to-date memories. Through experiments on Amazon product
review data, we proved that our model performed best on every dataset. Not only for recommender system, but our
model can also be used on other graph learning tasks facing sparsity problem which we leave it for a future work.
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