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By absorbing knowledge from past experiences, the objective of few-shot meta-learning is to obtain a prior that can enable fast
adaptation to new tasks. The existing model-agnostic meta-learning (MAML) algorithm provides a good initialization via a double-
gradient decent for few-shot learning, where the tasks are drawn from a fixed distribution. However, when dealing with various tasks
from multiple distributions such as recommendation tasks, meta-learning with a single prior might fail in cold-start recommendation
due to its insufficient capability for adaptation. To solve this problem, we consider to learn multiple proper priors to extend meta
learning into cold-start recommendation. In this paper, we propose a hybrid meta-learning (HML) method, which is able to modulate
its meta-learned prior parameters by task based cluster method, allowing more efficient fast adaptation. In addition, to provide
multi-initialization for meta learning, our HML method is learned with the proposed hard task cluster (HTC) scheme. The results
demonstrate the effectiveness of our model in modulating the meta-learned prior and outperform state-of-the-art methods.
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1 INTRODUCTION

How to build a personalized recommender system with a high performance for each user is an interesting topic [25] in
recommender systems. In cold-start situation, we have no information or limited information about new users or items
[35], which indicates that a few rows or columns in the rating matrix contain no or very few valid elements. So the
latent factor model in this case is likely to be ineffective. Many prior works attempt to address this problem by utilizing
the side information [11]. Some other works intend to find the similarity among the items based on features, by which
the system can recommend the proper goods to new users [9]. Correspondingly, proper users can be recommended to
new items in a similar way [36].

Figure 1 shows an simplified example. In the first page (a), systems collect the information under privacy issues. And
in second page (b), Netflix initially presents popular movies and television programs to new users, and the user chooses
the videos that he/she likes among the candidates. Afterward, the system recommends some programs based on the
videos selected by the user, which is shown in third page (c). Recently, deep learning methods are also applied to make
recommendations in this scenario for improving performance [8, 19].

Meta-learning algorithm learns to efficiently solve new tasks by extracting prior experiences. Due to its efficiency of
few-shot learning, it draws much attention in cold start recommendation. Of particular interest are optimization-based
approaches, such as classic model-agnostic meta-learning (MAML) [12]. MAML aims to find a prior for fast adaptation
to new tasks after a few gradient updates, which has recently been applied in recommender systems. As the first try,
Vartak et al. [39] propose a MAML based meta-learning model for binary-item classification and recommendation,
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Fig. 1. Simplified example of evidence candidates.

although the application is very limited. Then, Fei et al. [7] design a general federate MAML based framework that is
able to cope with various meta-learning algorithms. By applying MAML in estimating the preference of cold-start users,
Lee et al. [25] propose the MELU method. Meta-learning [1, 4, 32, 34] have attempted to tackle this problem by seeking
an initialization of model parameters that a small number of gradient updates will lead to superior performance on a
new task. With the aim of learning faster on a new task, meta-learning makes it possible by leveraging large quantities
of past experiences collected across a distrition of tasks to learn a common structure [34]. This kind of fast and flexible
learning is challenging, since the agent must integrate its prior experience with a small amount of new information, and
meanwhile prevent overfitting to the new data. Furthermore, the form of prior experience and new data will depend on
the specific task. Consequently, the mechanism for meta-learning should be general to the task and the form of the
corresponding computation for the widest applicability. MAML adopts a naive way to train the model for a sequence of
tasks, where in average speaking the initial parameters are largely good for new tasks [12].

All these works assume that tasks follow a fixed distribution and one good initalization is enough for quickly adapting
to all new tasks after a few gradient updates. However, Vuorio et al. [40] identify and demonstrate the limitation of
having to rely on a single initialization in a family of widely used model-agnostic meta-learners.

While most of the existing model-agnostic meta-learners rely on a single initialization, different tasks sampled from a
complex task distributions can require substantially different parameters, making it difficult to find a single initialization
that is close to all target parameters [40].

In order to solve this problem, we consider to adaptively learn multiple proper priors by extending the existing
MAML. The challenge lies in associating each task with one of the meta-learners requires additional task identity
information, which is often not available or could be ambiguous.

To overcome this issue, we aim to develop a task-cluster based meta-learner that is able to effectively cluster tasks
and acquire prior parameters. In this paper, we propose a Hybrid-Initialization meta-learning (HML) framework which
is able to modulate its meta-learned prior parameters by task based cluster method.

Contribution: The primary contribution of this work is a hybrid meta-learning framework with multiple priors for
different categories of tasks, by forming task based cluster that could execute fast adaptation in few-shot learning.

The second main contribution of this paper is proposed a hard task cluster (HTC) scheme which combine an effective
meta-training curriculum and cluster method.
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Fig. 2. Illustration example of Multi-Initialization updating.

Experiment result shows that our hybrid meta-learning algorithm outperforms baselines and demonstrate the
effectiveness of HML in wide-range distribution recommendation tasks.

The paper is organized as follows. In Section 2, we discuss related works in curriculum learning and meta-learning.
In Section 3, we propose our method. Finally, we conduct experiments on cold-start recommendation in Section 4, and
demonstrate the effectiveness of the proposed method.

2 HYBRID META LEARNING FOR COLD-START RECOMMENDATION

2.1 Framework of HML

The core idea of HML framework is to utilize multiple priors for different categories of tasks to overcome the limitation
of MAML in complex tasks.

The framework contains two phase, i.e., Meta-Training Phase and Meta-Test Phase.

2.1.1 Meta-Training Phase. Meta-training phase proceeds by alternating between two steps:
Update step Calculate the new meta-learner based on the tasks in each cluster.
Assignment step Assign each task to the cluster which is intuitively the "nearest" meta-learner.
As shown in Figure 2, the step 1 is update step, the step 2 is assignment step, The meta-training phase has converged

when the assignments no longer change.

2.1.2 Meta-Test Phase. meta-test phase also proceeds by alternating between two steps:
Assignment step Assign each test task to the cluster, and assign the meta-learner of the cluster to it.
Evaluate step Based on the meta-learner, we further update the parameter via the gradient decent method.
Based on the core idea of our general HML framework, we propose a specific Curriculum Learning-Based Solution

in the folllowing sections.

2.2 Curriculum Learning-Based Solution for our General HML Framework

Based on the general framework, we propose HTC scheme for assignment step in both meta-training and meta-test
phases. The update step and evaluate step in each phase are mentioned below.

2.2.1 Meta-Training Phase. For each cluster, this phase aims to learn a meta-learner from multiple episodes. In each
episode, meta-training has a two-stage optimization. Stage-1 is called base-learning, where the cross-entropy loss is
used to optimize the parameters of the base-learner. Given an episode T , the base-learner fθ is learned from episode
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training data T (tr ) and its corresponding loss LTtr (fθ ),

min
θ
LTtr (fθ ′) = LTtr

(
fθ−α∇θ LTtr (fθ )

)
(1)

After optimizing this loss, the baselearner has parametersθ̃T . Stage-2 contains a feed-forward test on episode test
datapoints. The test loss is used to optimize the parameters of the meta-learner.

Then, the meta-learner is updated using test loss LTte (fθ ). After meta-training on all episodes, the meta-learner is
optimized by test losses,

θ ← θ − β∇θLTte (fθ ′) (2)

Therefore, the number of meta-learner updates equals to the number of episodes.

2.2.2 Meta-Test Phase. In this phase, after tasks are clustered by HTC, and given the meta-learn as initialization in
cluster which the test task belongs to. Given Tunseen , the meta-learnerθ̃T teaches the base-learner θTunseen to adapt
to the objective of Tunseen by some means. Then, the test result on T te

unseen is used to evaluate the meta-learning
approach. If there are multiple unseen tasks, the average result on T te

unseen will be the final evaluation.

Algorithm 1 Hybrid Meta-Learning (HML)

1: Require: p(T ): distribution of tasks from multiple domains
2: Require: α , β : step size hyperparameters
3: Randomly initialize θk for recommendation model fθk
4: while not converge do
5: Sample batch of tasks T from all p(T )
6: for all task Ti in T do
7: Find the cluster labelled by θ∗: θ∗ = Cluster

(
Ti , fθk

)
8: Compute the inner gradient ∇θ ∗LT (i )sup

(fθ ∗ )

9: Realize adaptation: (θ∗)′ = θ∗ − α∇θ ∗LT (i )sup
(fθ ∗ )

10: end for
11: for all meta parameter θk do
12: Aggregate all query sets labelled by θk : Tque,k
13: Update using: θk ← θk − β

∑
∇θkLTque,k

(
fθ ′k

)
14: end for
15: end while

2.2.3 Hard Task Cluster (HTC) scheme. In this section, we introduce a method to assign tasks into different clusters in
both meta-training and meta-test phase.

HTC is essentially a simple but effective scheme to identify tasks in each of different domains. Specifically, HTC
module takes each task Ti as input to learn the most suitable initialization θ∗. Denote by T (i)sup the support set and T (i)que
the query set in Ti . TThe support set T

(i)
sup of task Ti is input into every recommendation model fθk , k = 1, 2, · · · ,K ,

which is optimized by minimizing the loss of fθk
(
T
(i)
sup

)
. After fast adaptation using one or a few gradient updates, the

model fθk becomes fθ ′k to fit query set T (i)que . The query set T (i)que of task Ti is input into every recommendation model

fθ ′k
for evaluation. We calculate the accuracy from every recommendation model fθ ′k

(
T
(i)
que

)
, where the accuracy is
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Table 1. Differences of task partitioning in MAML and HML

Method MAML HML

train
meta-train Support Support

Query Query

HTC None Support
Query

test
HTC None

Resample Sups and Supq
from Support

Sup_s
Sup_q

meta-test Support Support
Query Query

Table 2. Recommendation results, where NDCG@10 is used.

MovieLens Bookcrossing
Type Method MAE RMSE NDCG MAE RMSE NDCG

Recommendation
of existing items
for existing users

WD 0.7206 0.9107 0.4577 0.9976 1.3904 0.4195
DeepFM 0.7244 0.9152 0.4592 0.9894 1.3824 0.4177
MeLU 0.7137 0.9082 0.4654 0.9807 1.3624 0.4288
HML 0.6968 0.8573 0.4959 0.9622 1.1353 0.4032

Recommendation
of existing items
for new users

WD 0.9385 1.1520 0.4252 1.3863 1.7623 0.3996
DeepFM 0.9530 1.1666 0.4217 1.3824 1.7673 0.3916
MeLU 0.9080 1.0767 0.4357 1.4663 1.6352 0.4011
HML 0.8433 1.0036 0.4245 1.2567 1.4735 0.4045

Recommendation
of new items

for existing users

WD 0.9515 1.1720 0.3796 1.5440 1.9438 0.3878
DeepFM 0.9497 1.1723 0.3726 1.5464 1.9438 0.3807
MeLU 0.9275 1.1006 0.3878 1.5303 1.7273 0.3923
HML 0.8643 1.0008 0.3834 1.4348 1.5906 0.3952

measured by the following MSE loss

LT (i )que

(
fθ ′k

(
T
(i)
que

))
=
∑ (

yi, j − ŷi, j
)2
, (3)

where yi, j is the preference of user i for item j, and ŷi j is preference predicted by recommendation model fθ ′k

(
T
(i)
que

)
.

The task Ti is assigned to the cluster represented by initialization θ∗ that generates the highest accuracy.
In summary, the procedure is represented as θ∗ = Cluster

(
Ti , fθk

)
.

As shown in Table 1, similar to train phase, tasks in test phase alse clustered by HTC. The only difference is that
HTC’s inputs of test phase are Sups and Supq , which are resample from support data.

3 EXPERIMENT

3.1 Datasets

We evaluate the performance of our model on two recommendation benchmark datasets: MovieLens and Bookcrossing.
We evaluate the performance on two benchmark datasets:
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• MovieLens [20] consists of 1 million ratings of 6040 users and 3706 movies. Each rating is an integer in the
range of 1 to 5. The ratings are highly sparse, where no ratings occupy 95.8% in MovieLens. The side information
for users contains the user’s age, gender, occupation and zipcode while the side information for items contains
the category of movie genre and release date.
• Bookcrossing [42] contains 1149780 books from 278858 users, where each rating is an integer from 0 to 10 and
no ratings occupy 99.9%. Some attributes of books and users are also provided and being utilized as the side
information.

3.2 Baselines

In order to evaluate the performance, we consider Wide & Deep (WD) [8] ,DeepFM [19] and MeLU [25] as baselines in
our experiments.

3.3 Evaluation metric

The root mean squared error (RMSE), mean absolute error (MAE) and NDCG@k are used as evaluation metrics, where
RMSE and MAE are defined as

RMSE =

√√ 1��Tq �� ∑
yi, j ∈Tq

(
yi, j − ŷi, j

)2
, (4)

MAE =

∑
yi, j ∈Tq

��yi, j − ŷi, j ����Tq �� , (5)

where Tq is the query set of test tasks and
��Tq �� is the total number of ratings in Tq .

NDCG@k are defined as

NDCG@K = ZK

K∑
i=1

2ri − 1
log2(i + 1)

,

where ZK is the normalizer to ensure that the perfect ranking has a value of 1; ri is the graded relevance of item at
position i .

3.4 Experiment Setup

MovieLens and Bookcrossing are commonly used for evaluating the performance of recommendation. Both datasets
provide basic user and item information, such as user’s age and publication year, and the datasets have explicit feedback
information. Similar to [26], we divided the items and users into two groups (existing/new) to evaluate the performance
under item-cold-start and user-cold-start condition.

3.5 Performance Comparison

We consider regular recommendation (Recommendation of existing items for existing users) with existing
items and users, new-user recommendation (Recommendation of existing items for new users) with existing
items, and new-item recommendation (Recommendation of new items for existing users) with existing users,
and compare our HML with baselines. Table 2 shows RMSE, MAE and NDCG@K, which demonstrates that HML
achieves the best performance for all cases.
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4 CONCLUSION

By extending model-agnostic meta-learning (MAML) to seek multiple proper priors for complex tasks, a hybrid meta-
learning (HML) algorithm is proposed, which is able to modulate its meta-learned prior parameters by task based cluster
method, allowing more efficient fast adaptation. In addition, we introduce the hard task cluster (HTC) scheme as an
effective learning curriculum task based cluster method for HML. Experimental results demonstrate that our method
achieves a superiority over the state-of-the-art methods on cold-start recommendation.
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